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Abstract
We study a certain integrability condition on the coefficient field of linear, nonuniformly
elliptic equations which yields the local boundedness for solutions. Such an integrability
condition was found by Trudinger and then improved by P. Bella and M. Schäffner. By
modifying a counterexample of B. Franchi, R. Serapioni and F. Serra Cassano for the
complementary condition in the spatial dimension d = 4, we prove the sharpness of the
condition of P. Bella and M. Schäffner. Contrary to what was previously assumed by
the authors, we will see that their example is suitable not only for d ≥ 4, but also for
d = 3 and even clarifies the borderline case of the above-mentioned condition for d ≥ 4.
The proof of sharpness is based on the proof of B. Franchi, R. Serapioni and F. Serra
Cassano, with some arguments discussed in more detail.
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1 Introduction and Main Results

Consider the linear, second order, scalar elliptic equation

∇ · a∇u = 0 , (1.1)

where d ≥ 2 and a : Ω → Rd×d is a measurable matrix field on a domain Ω ⊂ Rd.
Moreover, we define

λ(x) := inf
ξ∈Rd

ξ · a(x)ξ
|ξ|2

, µ(x) := sup
ξ∈Rd

|a(x)ξ|2

ξ · a(x)ξ (1.2)

and suppose λ and µ are nonnegative measurable functions. The equation (1.1) is often
used in physics to model an equilibrium, where the solution u can be interpreted as a
density of some physical quantity. Thus, it is interesting to study the properties of a
solution u of (1.1) depending on the coefficient field a. Before we now list some results,
note that the term weak solution will be defined later.

In [De 57] De Giorgi and in [Nas58] Nash proved that weak solutions of (1.1) are Hölder
continuous, if λ−1 and µ are essentially bounded (i.e. a is uniformly elliptic). In [Tru71]
Trudinger or in [MS68] Murthy and Stampacchia considered λ−1 ∈ Lq(Ω) and µ ∈ Lp(Ω)
with p, q ∈ (1,∞] and proved that, if 1

p + 1
q <

2
d , where

1
∞ := 0, then weak solutions

of (1.1) are locally bounded. This result was improved by Bella and Schäffner [BS19] by
assuming p and q satisfy the pq-condition 1

p + 1
q <

2
d−1 . To be more precise, they proved

the following theorem.

Theorem 1.1. Fix d ≥ 2, a domain Ω ⊂ Rd and p, q ∈ (1,∞] satisfying the pq-condition

1
p

+ 1
q
<

2
d− 1 . (1.3)

Let a : Ω → Rd×d be such that λ and µ given in (1.2) are nonnegative and satisfy
λ−1 ∈ Lq(Ω), µ ∈ Lp(Ω). Then, any weak solution u of (1.1) in Ω is locally bounded.
More precisely, for every γ > 0 there exists c = c(γ, d, p, q) ∈ [1,∞) such that for any
ball BR ⊂ Ω, R > 0, it holds that

‖u‖L∞(BR/2) ≤ cΛ(BR)
p′
γ

(1+ 1
δ

)
(
−
∫
BR

|u|γ
) 1
γ

,

where δ := min
{ 1
d−1 −

1
2p ,

1
2
}
− 1

2q > 0, p′ := p
p−1 , and for every measurable set S ⊂ Ω

Λ(S) :=
(
−
∫
S
µp
) 1
p
(
−
∫
S
λ−q

) 1
q

.
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1 Introduction and Main Results

We study whether the pq-condition (1.3) is sharp. Are there coefficient fields that
satisfy λ−1 ∈ Lq(Ω) and µ ∈ Lp(Ω) with

1
p

+ 1
q
≥ 2
d− 1 , (1.4)

such that the weak solutions are unbounded on a ball?
The spatial dimension d = 2 is already discussed in [BS19], where p = 1 and q = 1 in

the complementary case. To be more precise, the following proposition was proven there.

Proposition 1.2. Fix a domain Ω ⊂ R2. Let a : Ω→ R2×2 be measurable such that λ
and µ given (1.2) are nonnegative and satisfy 1

λ , µ ∈ L
1(Ω). Then, there exists c ∈ [1,∞)

such that for every weak solution u of (1.1) and for any ball BR ⊂ Ω

‖u‖L∞(BR/2) ≤ c
(
R

(
−
∫
BR

λ−1
) 1

2
(
−
∫
BR

a∇u · ∇u
) 1

2
+−
∫
BR

|u|
)
.

Thus, it remains to study d ≥ 3. Indeed, for d = 4 Franchi, Serapioni and Serra Cassano
constructed in [FSC98] for 1

p + 1
q >

2
d−1 a coefficient field a such that a weak solution

of (1.1) is unbounded on the unit ball. They also claim that their counterexample can be
generalised to the case d ≥ 4. In this bachelor thesis we will see how their counterexample
can be modified. Moreover, it turns out that their counterexample also works for the
borderline case 1

p + 1
q = 2

d−1 and by a simple modification even for d = 3. However, the
modification for d = 3 does not cover the borderline case. Thus, it is still not clear if for
1
p + 1

q = 2
3−1 = 1 weak solutions of (1.1) are locally bounded.

To be more exact, we will prove in this bachelor’s thesis the following theorems.

Theorem 1.3. Let d = 3, Ω = B1 ⊂ R3 denote the unit ball and p, q ∈ (1,∞) satisfy

1
p

+ 1
q
> 1 . (1.5)

Then, there exists a scalar field ω : B1 → (0,∞) with ω−1 ∈ Lq(B1) and ω ∈ Lp(B1) such
that there exists an unbounded weak solution of

∇ · ω∇u = 0 .

Theorem 1.4. Fix d ≥ 4, let Ω = B1 ⊂ Rd denote the unit ball and p, q ∈ (1,∞] satisfy

1
p

+ 1
q
≥ 2
d− 1 .

Then, there exists a scalar field ω : B1 → (0,∞) with ω−1 ∈ Lq(B1) and ω ∈ Lp(B1) such
that there exists an unbounded weak solution of

∇ · ω∇u = 0 .
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Note that in Theorem 1.3 the case p = ∞ or q = ∞ cannot occur, otherwise the
inequality (1.5) cannot be satisfied. Moreover, the scalar field ω can be identified by
a = ωId, where Id denotes the d× d identity matrix. Additionally, we obtain λ = ω and
µ = ω, where λ and µ are as in (1.2).
This bachelor’s thesis is organised as follows: In chapter 2, we clarify the meaning of

weak solutions in this setting by introducing a suitable function space. We also prove
the weak maximum principle and some auxiliary lemmas that we will use in chapter 3.
In particular, we prove that it is sufficient to construct an unbounded subsolution for a
given coefficient matrix. Finally, in chapter 3 we prove Theorem 1.3 and Theorem 1.4.
We first discuss the case d = 3 in detail by motivating the steps of the proof. With d ≥ 4,
we proceed almost in the same way as in the case d = 3.
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2 Auxiliary Lemmas
As in [FSC98], we will prove Theorem 1.3 and Theorem 1.4 by constructing a coefficient
field and an unbounded weak subsolution instead of an unbounded weak solution. The
authors claimed that this follows, because of the weak maximum principle, and do not
go into this in detail. We will take a closer look at this argument.

For this we will first clarify the meaning of weak subsolution. Afterwards, we prove the
weak maximum principle, such that we are able to prove that it is sufficient to construct
a weak subsolution, which will be our first auxiliary lemma. The second one is just a
simple lemma which we will need for some calculations later.

Definition 2.1. Let Ω ⊂ Rd be a domain and a : Ω→ Rd×d be a coefficient field such
that µ, λ ≥ 0 given in (1.2) satisfy 1

λ , µ ∈ L
1(Ω). Then, the function spaces H1(a,Ω) and

H1
0 (a,Ω) are, respectively, defined as the completion of C1(Ω) and C1

c (Ω) with respect to
the norm ‖·‖H1(a,Ω) :=

√
L1(·, ·), where

L(u, v) :=
∫

Ω
a(x)∇u(x) · ∇v(x) dx ,

L1(u, v) := L(u, v) +
∫

Ω
µ(x)u(x)v(x) dx .

We say that u is a weak solution of (1.1) if and only if u ∈ H1(a,Ω) and L(u, ϕ) = 0 for
every ϕ ∈ H1

0 (a,Ω). Moreover, we call u a weak subsolution if and only if u ∈ H1(a,Ω)
and

∀ϕ ∈ H1
0 (a,Ω), ϕ ≥ 0 : L(u, ϕ) ≤ 0 .

Note that H1(a,Ω) and H1
0 (a,Ω) equipped with L1 are Hilbert spaces. Furthermore, if

one wants to prove that some function u ∈ H1(a,Ω) is a weak solution of (1.1), it suffices
to show L(u, ϕ) = 0 for every ϕ ∈ C∞c (Ω), since C∞c (Ω) is dense in H1

0 (a,Ω). The same
holds for weak subsolutions. Finally, let us write, for simplicity, H1(ω,Ω) := H1(ωId,Ω)
and H1

0 (ω,Ω) := H1
0 (ωId,Ω) if ω is a scalar field.

Weak Maximum Principle
The following two lemmas exhibit the properties of functions in H1

0 (a,Ω) required for the
proof of a maximum principle. Further properties of H1(a,Ω) and H1

0 (a,Ω) were treated
by Trudinger in [Tru73] and [Tru71]. Our first lemma can also be looked up there and
can be considered as a generelised chain rule.

Lemma 2.2. Let Ω ⊂ Rn be a domain and g : R → R uniformly Lipschitz-continuous
with g(0) = 0. Consider u ∈ H1(a,Ω) or u ∈ H1

0 (a,Ω). Then, the composition g(u)
belongs to H1(a,Ω) or H1

0 (a,Ω), respectively, and the chain rule applies, i.e.

∇(g(u)) = g′(u)∇u a.e. in Ω .
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By Lemma 2.2 and g(x) = x1{x>0} we get
Remark 2.3. Let u ∈ H1

0 (a,Ω). Then, u+ := sup{u, 0} ∈ H1
0 (a,Ω) and

∇u+ = ∇u1{u>0} a.e. in Ω .

In the following lemma we prove that the function space H1
0 (a,Ω) is a subset of a

Sobolev space. For this purpose we will use Poincaré’s inequality.
Theorem 2.4 (Poincaré’s inequality). Assume Ω ⊂ Rd is open and bounded. Suppose u
belongs to the Sobolev space W 1,p

0 (Ω) for some p ∈ [1,∞]. Then, we have the estimate

‖u‖W 1,p(Ω) ≤ CP ‖∇u‖Lp(Ω) ,

where the constant CP depends only on p, d and Ω.
A proof of this theorem and more about Sobolev spaces like construction, definition

and properties can be found in [Eva10] or [Sch13]. Note that we need some restrictions for
the use of Poincaré’s inequality, i.e. a bounded domain and the function space H1

0 (a,Ω)
instead of H1(a,Ω). But as we will see, this is sufficient for our purposes.
Lemma 2.5. Let Ω ⊂ Rd be a bounded domain and λ given in (1.2) satisfy λ−1 ∈ Lq(Ω)
for q ∈ [1,∞]. Consider u ∈ H1

0 (a,Ω) and define

q∗ :=
{ 2q
q+1 when q ∈ [1,∞) ,
2 when q =∞ .

Then, u belongs to the Sobolev space W 1,q∗
0 (Ω) or, more precisely,

‖u‖2W 1,q∗ (Ω) ≤ C
2
P ‖λ−1‖Lq(Ω)

∫
Ω
a∇u · ∇u , (2.1)

where CP denotes the constant from Poincaré’s inequality in Theorem 2.4.
Proof. It suffices to show the inequality (2.1) holds for a smooth function with compact
support u ∈ H1(a,Ω), because every function of H1

0 (a,Ω) or W 1,q∗
0 (Ω) can be approx-

imated by smooth functions with compact support with respect to their norms (see
Definition 2.1 and [Sch13]). Consider u ∈ C∞c (Ω) ∩H1(a,Ω). In the case q ∈ [1,∞) we
obtain, using Hölder’s inequality,

‖∇u‖2Lq∗ (Ω) =
(∫

Ω

λ
q
q+1

λ
q
q+1
|∇u|

2q
q+1

) q+1
q

≤ ‖λ−1‖Lq(Ω)

∫
Ω
λ|∇u|2 ≤ ‖λ−1‖Lq(Ω)

∫
Ω
a∇u · ∇u

and, if q =∞,

‖∇u‖2L2(Ω) =
∫

Ω

λ

λ
|∇u|2 ≤ ‖λ−1‖L∞(Ω)

∫
Ω
λ|∇u|2 ≤ ‖λ−1‖L∞(Ω)

∫
Ω
a∇u · ∇u .

By Poincaré’s inequality in Theorem 2.4, we get

‖λ−1‖Lq(Ω)

∫
Ω
a∇u · ∇u ≥ ‖∇u‖2Lq∗ (Ω) ≥ C

−2
P ‖u‖

2
W 1,q∗ (Ω) ,

which yields estimate (2.1).
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2 Auxiliary Lemmas

Next, we prove the maximum principle. For this purpose, let us say a function
u ∈ H1(a,Ω) satisfies u ≤ m on ∂Ω for some m ≥ 0 if (u−m)+ := sup{u−m, 0} belongs
to H1

0 (a,Ω).

Theorem 2.6 (Weak Maximum Principle). Let Ω ⊂ Rd be a bounded domain, q ∈ [1,∞]
and a : Ω→ Rd×d be a coefficient field such that µ, λ ≥ 0 given in (1.2) satisfy 1

λ ∈ L
q(Ω)

and µ ∈ L1(Ω). If a weak subsolution u ∈ H1(a,Ω) of (1.1) satisfies u ≤ m on ∂Ω for
some m ≥ 0, then

u ≤ m a.e. in Ω .

Proof. We define ϕ := (u−m)+ = sup{u−m, 0}. The maximum principle is proven when
we show ϕ = 0. According to Remark 2.3, ϕ belongs to H1

0 (a,Ω) and ∇ϕ = ∇u1{u>0}.
Since u is a weak subsolution and ϕ ≥ 0, we obtain

0 ≥ L(u, ϕ) =
∫

Ω
a∇u · ∇ϕ

=
∫

Ω
a∇u · ∇u1{u>0}

=
∫

Ω
a∇ϕ · ∇ϕ

≥ C−2
P ‖λ

−1‖−1
Lq(Ω)‖ϕ‖

2
W 1,q∗ (Ω)

≥ 0 ,

where we used the estimate (2.1) in Lemma 2.5. Hence, we obtain ‖ϕ‖W 1,q∗ (Ω) = 0 which
implies that ϕ = 0.

Auxiliary Lemmas
Now, we move on to the announced auxiliary lemmas. For this purpose, let us say the
functions u, v ∈ H1(a,Ω) satisfy u = v on ∂Ω if u− v belongs to H1

0 (a,Ω).

Lemma 2.7. Let Ω ⊂ Rd be a bounded domain and λ given in (1.2) satisfy λ−1 ∈ Lq(Ω)
for q ∈ [1,∞]. Assume that an unbounded weak subsolution v of (1.1) and a weak solution
u of (1.1) exist. If u = v on ∂Ω, then u is unbounded.

Proof. Since v − u ∈ H1
0 (a,Ω), we have (v − u)+ ∈ H1

0 (a,Ω) due to Remark 2.3. Thus,
we get v− u ≤ 0 on ∂Ω. Additionally, v− u is a weak subsolution of (1.1) and, according
to the weak maximum principle, we obtain

v − u ≤ 0 a.e. in Ω .

Note that with this lemma it suffices to construct an unbounded weak subsolution
to prove Theorem 1.3 and Theorem 1.4, but we have still to show that such a solution
exists.
Finally, we prove the following simple lemma that we need for some calculations.
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Lemma 2.8. Let γ > 1. The integral∫ 1

0
rp
(
log γ

r

)q dr (2.2)

converges in case p > −1 for all q ∈ R and case p = −1 if q < −1.

Proof. We first rewrite the integral by a simple change of variables, i.e. z = log γ
r ,∫ 1

0
rp
(
log γ

r

)q dr = γp+1
∫ ∞

log γ
e−z(p+1) zq dz . (2.3)

Note that log γ > 0, because γ > 1. For p = −1, the integral simplifies to

γp+1
∫ ∞

log γ
zq dz ,

which converges for q < −1.
If p > −1, the function f(z) := e−z(p+1) zq is bounded by some constant c := c(p, q) > 0

on (log γ,∞) and it is decreasing from some point z0 > log γ. Therefore, the integral (2.3)
can be estimated for N ≥ z0 by

γp+1
(
cN +

∞∑
n=N

e−n(p+1) nq
)
.

The series converges due to the ratio test and therefore the integral (2.2) also does.
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3 Construction of the Counterexample

In this chapter, we construct counterexamples which provide a proof of Theorem 1.3
and Theorem 1.4. We proceed in a similar way as in [FSC98]. The construction
consists of three parts. In the first one, we define the coefficient field which satisfies the
complementary pq-condition (1.4). According to Lemma 2.7, it is sufficient to construct
an unbounded subsolution and to show the existence of a certain weak solution, which
happens in the second and in the third part.

3.1 Counterexample in three dimensions
Fix d = 3 and p, q ∈ (1,∞) such that

1
p

+ 1
q
> 1 . (3.1)

Consider θ ∈ (0, 1) such that

1
p
> (1− θ) and 1

q
> θ .

Note that we have θ /∈ {0, 1}, because of p, q ∈ (1,∞). Throughout the proof we write .
if ≤ holds up to a positive constant that depends only on p and q.

Construction of the Coefficient Field
As stated in Theorem 1.3, we construct the coefficient field on the unit ball B1. The
idea of the proof is to construct a coefficient field such that a weak solution becomes
unbounded around the x1-axis. The simplest idea is to consider coefficient fields that are
independent of x1 and depend only on the distance from {x1 = 0}. Let us denote this
distance

r :=
√
x2

2 + x2
3

for the entire section. Obviously, we have r ∈ [0, 1]. Furthermore, it is advantageous for
a coefficient field to consider a step function. Like in [FSC98], we define our coefficient
field ωθ : B1 → R+ by

ωθ(x) :=
{

(i+ 1)θ4−2iθ when r ∈
[1

24−i, 4−i
)
,

(i+ 1)−(1−θ)42i(1−θ) when r ∈
[
4−i−1, 1

24−i
)
,

(3.2)

where i ∈ N0. Let us call the intervals of the form
[1

24−i, 4−i
)
even and those of the form[

4−i−1, 1
24−i

)
odd. We note that the values of ωθ alternate in the annuli between very

8



3.1 Counterexample in three dimensions

small and very large values. In fact, ωθ approximates on the odd intervals a function in
Lp(B1) and on the even intervals a function whose inverse is in Lq(B1), as we will see in
the following two lemmas. The statements contained therein were formulated in [FSC98],
but not proven.

Lemma 3.1. Let ωθ be as in (3.2). Then, the following inequalities hold in B1( 1
log 4r

2 log 4
r

)θ
≤ ωθ(x) ≤

(
log 4
r2 log 2

r

)1−θ

. (3.3)

Proof. First, we define

f(r) :=
( 1

log 4r
2 log 4

r

)θ
and F (r) :=

(
log 4
r2 log 2

r

)1−θ

. (3.4)

A simple calculation reveals that f ′ ≥ 0 and F ′ ≤ 0 for r ∈ (0, 1). In particular,
F is decreasing and f is increasing on (0, 1). Therefore, it is sufficient to show the
inequalities (3.3) at the right end of the even and odd intervals.
Case 1. Let r ∈

[1
24−i, 4−i

)
. Since the function f is increasing, we have

f(r) ≤ f(4−i) =
( 1

log 44−2i log(4i+1)
)θ

=
( log 4

log 4(i+ 1)4−2i
)θ

= ωθ(r).

The monotonicity of F yields the following:

F (r) ≥ F (4−i) =
( log 4

4−2i log
(
2 · 4i

))1−θ
>

( 42i log 4
log(4i+1)

)1−θ
= 42i

i+ 1ωθ(r) ≥ ωθ(r).

Notice, we used the monotonicity of the logarithm and 42i ≥ i+ 1.
Case 2. Let r ∈

[
4−i−1, 1

24−i
)
. We obtain analogously

F (r) ≥ F
(1

24−i
)

=
( 4 log 4

4−2i log 4i+1

)1−θ
=
( 42i

i+ 1

)1−θ
41−θ ≥ ωθ(r) ,

where we used 41−θ ≥ 1. Additionally, we have

f(r) ≤ f
(1

24−i
)

=
( 1

4 log 44−2i log
(
2 · 4i+1))θ = 42i(1−θ)4−2i

(
i

4 + 3
8

)θ
≤ ωθ(r) ,

where we needed

4−2i
(
i

4 + 3
8

)θ
≤ (i+ 1)−(1−θ) ,

which can easily be proven by an induction argument.

Lemma 3.2. Let ωθ be as in (3.2). Then, it satisfies

ωθ ∈ Lp(B1) and ω−1
θ ∈ L

q(B1) .
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3 Construction of the Counterexample

Proof. Let F, f be as in (3.4). Using Lemma 3.1, it suffices to show

F ∈ Lp(B1) and f−1 ∈ Lq(B1) .

Using Fubini’s theorem and radial coordinates, we obtain∫
B1
|F (x)|p dx .

∫ 1

0
dx1

∫ 1

0
r−2p(1−θ)(log 2

r

)−p(1−θ)
r dr . (3.5)

Since according to (3.1) the inequality p < 1
1−θ holds, we have 1 − 2p(1 − θ) > −1

and (3.5) converges due to Lemma 2.8.
Analogously, we get ∫

B1
|f−1|q dx .

∫ 1

0
r−2qθ(log 4

r

)−qθ
r dr .

and the integral converges by Lemma 2.8, since q < 1
θ implies −2qθ + 1 > −1.

Construction of the Subsolution
As discussed before, we construct an unbounded weak subsolution of

∇ · (ωθ∇u) = 0 . (3.6)

We define v : B1 → R+

v(x) := eαx1 φ(r) , (3.7)

where φ : (0, 1)→ R+

φ(r) :=
{
i+ ηi

log 2 log 4−i
r when r ∈

[1
24−i, 4−i

)
,

i+ 1 + (ηi − 1)(4i+1r − 1)2 when r ∈
[
4−i−1, 1

24−i
)
,

(3.8)

α :=
√

12
log 2 , ηi := 2

2 + (2 log 2)−1(i+ 1)4−2i . (3.9)

These definitions are similar to those in [FSC98]. Only α, ηi and φ on the even intervals
are adapted to the spatial dimension d = 3.
Like in [FSC98], we divide the proof that v is a weak subsolution of (3.6) into three

lemmas. In the first one, we show v ∈ H1(ω,B1). Then, we prove that v is a weak
subsolution in a positive distance away from the x1-axis. Arguing that the contributions
from a tiny neighborhood of the axis {x1 = 0} to the integral in the weak formulation is
negligible, we conclude that v is a subsolution in B1.
Before we begin with the proof, let us take a closer look at v. The number α and

ηi in (3.9) are especially important for the second step. Moreover, it decreases on the
interval [4−i−1, 4−i] from i+ 1 to i for i ∈ N0. Hence, φ is unbounded, because it becomes
infinite as r → 0+. Furthermore, we notice that φ equals i + ηi at r = 1

24−i. Thus, φ,
and therefore v, is continuous in B1 \ {x1 = 0}.
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3.1 Counterexample in three dimensions

Finally, unlike in [FSC98], we will need estimates for ωθ and for the derivatives

φ′(r) =
{
− ηi
r log 2 when r ∈

(1
24−i, 4−i

)
,

2(ηi − 1)4i+1(4i+1r − 1) when r ∈
(
4−i−1, 1

24−i
)
,

φ′′(r) =
{

ηi
r2 log 2 when r ∈

(1
24−i, 4−i

)
,

2(ηi − 1)42i+2 when r ∈
(
4−i−1, 1

24−i
)
.

Lemma 3.3. Let ωθ be as in (3.2) and φ be as in (3.8). Then,

ωθ(r) .

r2θ(log 4
r

)θ when r ∈
[1

24−i, 4−i
)
,

r−2(1−θ)(log 2
r

)−(1−θ) when r ∈
[
4−i−1, 1

24−i
)
,

|φ(r)| .
{

log 4
r when r ∈

(1
24−i, 4−i

)
,

log 2
r when r ∈

(
4−i−1, 1

24−i
)
,

|φ′(r)| .
{
r−1 when r ∈

(1
24−i, 4−i

)
,

r log 2
r when r ∈

(
4−i−1, 1

24−i
)
.

Proof. Fix i ∈ N0 and r ∈
(1

24−i, 4−i
)
. Since i+ 1 ≤ log 4

r and 4−i ≤ 2r, we get

ωθ(r) = (i+ 1)θ4−2iθ . r2θ(log 4
r

)θ
.

Additionally, we obtain

|φ(r)| = i+ ηi
log 2 log 4−i

r
≤ i+ 1 ≤ log 4

r

and
|φ′(r)| = ηi

r log 2 ≤
1

r log 2 .
1
r
,

where we used ηi ∈ (0, 1) and 1
log 2 log 4−i

r ∈ [0, 1].
Now, fix r ∈

(
4−i−1, 1

24−i
)
. Since i+ 1 ≤ log 2

r and 4−i ≤ 4r, we get

ωθ(r) = (i+ 1)−(1−θ)42i(1−θ) . r−2(1−θ)(log 2
r

)−(1−θ)
.

Using (ηi − 1) ∈ (−1, 0) and (4i+1r − 1)2 ≥ 0, we obtain

|φ(r)| = i+ 1 + (ηi − 1)(4i+1r − 1)2 ≤ i+ 1 ≤ log 2
r
.

Now, we must argue for φ′(r) a bit differently than before. Using the definition of ηi
in (3.9), we get

|φ′(r)| = 2 (2 log 2)−1(i+ 1)4−2i

2 + (2 log 2)−1(i+ 1)4−2i 4
i+1(4i+1r − 1) . (i+ 1)4−2i4i+1 . r log 2

r ,

where we needed (4i+1r − 1) ∈ [0, 1].
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3 Construction of the Counterexample

The following lemmas were also shown in [FSC98], but we will prove them in more
detail.
Lemma 3.4. Let v be as in (3.7). Then, v ∈ H1(ωθ, B1).
Proof. To show v ∈ H1(ωθ, B1), it is sufficient to approximate it with Lipschitz functions
with respect to the H1(ωθ, B1)-norm, since every Lipschitz function can be approximated
by C∞(B1) functions. Define for n ∈ N

φn(r) := φ(r)1{r≥4−n} + n1{r<4−n} and vn(x) := eαx1 φn(r) .

At this point, it was claimed in [FSC98] that vn → v in H1(ωθ, B1), which we will now
prove.

Each function vn is Lipschitz-continuous and vn and ∇vn converge pointwise to v and
∇v, respectively. Moreover,

‖v − vn‖H1(ωθ,B1) =
∫
B1
ωθ(r)(|∇v(x)−∇vn(x)|2 + |v(x)− vn(x)|2) dx

=
∫
B1

e2αx1 ωθ(r)
(
(α2 + 1)|φ(r)− n|2 + |φ′(r)|2

)
1{r<4−n}(r) dx

.
∫ 1

0
ωθ(r)(|φ(r)|2 + |φ′(r)|2) r dr , (3.10)

where we needed

|∇v(x)−∇vn(x)| = |∂1v(x)− ∂1v(x)|+ |∂rv(x)− ∂rvn(x)|
= α e2αx1 |φ(r)− φn(r)|+ e2αx1 |φ′(r)− φ′n(r)| ,

Fubini’s theorem, radial coordinates and φ(r) ≥ n if r < 4−n.
If (3.10) converges, the claim follows by the dominated convergence theorem. We write∫ 1

0
ωθ(r)(|φ(r)|2 + |φ′(r)|2) r dr

=
∞∑
i=0

∫ 4−i

1
2 4−i

ωθ(r)(|φ(r)|2 + |φ′(r)|2) r dr +
∫ 1

2 4−i

4−i−1
ωθ(r)(|φ(r)|2 + |φ′(r)|2) r dr

and use Lemma 3.3 to get
∞∑
i=0

∫ 4−i

1
2 4−i

ωθ(r)|φ(r)|2 r dr .
∫ 1

0

(
log 4

r

)2+θ
r1+2θ dr ,

∞∑
i=0

∫ 4−i

1
2 4−i

ωθ(r)|∂rφ(r)|2 r dr .
∫ 1

0

(
log 4

r

)θ
r−1+2θ dr ,

∞∑
i=0

∫ 1
2 4−i

4−i−1
ωθ(r)|φ(r)|2 r dr .

∫ 1

0

(
log 2

r

)1+θ
r−1+2θ dr ,

∞∑
i=0

∫ 1
2 4−i

4−i−1
ωθ(r)|∂rφ(r)|2 r dr .

∫ 1

0

(
log 2

r

)1+θ
r1+2θ dr .

Since θ > 0, all these integrals converge due to Lemma 2.8.
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3.1 Counterexample in three dimensions

Lemma 3.5. Let v be as in (3.7) and γ2i := 4−i, γ2i+1 := 1
24−i for i ∈ N0. Then, v is a

weak subsolution of (3.6) in each cylindrical shell B1 ∩ {γN < r < 1} with N ∈ N.

Proof. Fix N ∈ N and define Ω := B1 ∩ {γN < r < 1}. Furthermore, let ϕ ∈ C∞c (Ω) be
nonnegative. Additionally, we denote the cylindrical shells with

M2i := B1 ∩
{1

24−i < r < 4−i
}

and M2i+1 := B1 ∩
{
4−i−1 < r < 1

24−i
}
,

the left-sided weighted derivative with (ωθφ′)(r−) and the right-sided weighted derivative
with (ωθφ′)(r+). Since ωθ is constant on each Mk, we obtain via integration by parts

∫
B1
ωθ∇v · ∇ϕ =

N∑
k=0

∫
Mk

ωθ∇v · ∇ϕ

=
N∑
k=0
−
∫
Mk

ωθ∆vϕ+
∫
∂Mk

ωθ∇v · ~nϕ

=
N∑
k=0
−
∫
Mk

ωθ∆vϕ

+
N−1∑
k=1

∫
B1∩{r=γk}

eαx1
(
(ωθφ′)(γ−k )− (ωθφ′)(γ+

k )
)
ϕ(x) dx ,

where ~n denotes the unit surface normal. Since ϕ has compact support in Ω, the boundary
integrals on the sets B1 ∩ {r = 1} and B1 ∩ {r = γN} vanish.

Thus, we have proven what was claimed in [FSC98], i.e. it is sufficient to prove

(i) −∆v ≤ 0 in Mk,
(ii) (ωθφ′)(γ−k )− (ωθφ′)(γ+

k ) ≤ 0 for every k.

Proof of (i). Using spherical transformation, we obtain

−∆v(x) = − eαx1

(
α2φ(r) + 1

r
φ′(r) + φ′′(r)

)
,

hence −∆v ≤ 0 in Mk provides

α2φ(r) + 1
r
φ′(r) + φ′′(r) ≥ 0 .

For r ∈
(1

24−i, 4−i
)
, we get

α2φ(r) + 1
r
φ′(r) + φ′′(r) = α2

(
i+ ηi

log 2 log 4−i

r

)
+ 1
r

(
− ηi
r log 2

)
+ ηi
r2 log 2 ≥ α

2i ≥ 0 ,

where the second and the third term cancel each other, and we used ηi
log 2 log 4−i

r ≥ 0. This
should be no surprise, since the second and the third term are exactly planar laplacian,
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3 Construction of the Counterexample

whereas Φ(x) = C0 + C1 log r, i.e. modulo constants Φ is the fundamental solution of
−∆u = 0 in the plane (see [Eva10]).
Now, fix r ∈

(
4−i−1, 1

24−i
)
. Then, it follows that

α2φ(r) + 1
r
φ′(r) + φ′′(r) (3.11)

= 2(ηi − 1)42i+2
(

α2(i+ 1)
2(ηi − 1)42i+2 + α2(4i+1r − 1)2

2 · 42i+2 + 1
r

(r − 4−i−1) + 1
)
.

Furthermore, we get

α2(i+ 1)
2(ηi − 1)42i+2 + α2(4i+1r − 1)2

2 · 42i+2 + 1
r

(
r − 4−i−1)+ 1

= 2− 4−i−1

r
+ α2

2 · 42i+2

(
i+ 1
ηi − 1 + (4i+1r − 1)2

)
≤ 3

2 −
α2

2 · 42i+2

(
i+ 1
1− ηi

− 1
)

= 3
2 −

α2

2 · 42i+2

((i+ 1)(2 + (2 log 2)−1(i+ 1)4−2i)
(2 log 2)−1(i+ 1)4−2i − (2 log 2)−14−2i

(2 log 2)−14−2i

)
= 3

2 −
α2

2 · 42i+2
2 + (2 log 2)−1i4−2i

(2 log 2)−14−2i

= 3
2 −

α2 log 2
8 − α2i

2 · 42i+2

= −α
2

2 i4−2i−2 ≤ 0 ,

where we used −1
r ≤ −2 · 4i, (4i+1r − 1)2 ≤ 1 and the definitions of ηi and α as in (3.9).

This and (ηi − 1) ≤ 0 imply that the term (3.11) is greater than 0. In particular, note
that α was defined so that the first and second summand in the penultimate line cancel
each other.
Proof of (ii). Consider r = 4−i. Then, the right-sided derivative satisfies

φ′
(
(4−i)+) = φ′

(
(4−(i−1)−1)+) = 2(ηi−1 − 1)4i(4i4−i − 1) = 0

and the left-sided derivative is

φ′
(
(4−i)−

)
= − ηi

4−i log 2 < 0 .

Thus, (ωθφ′)
(
(4−i)−

)
− (ωθφ′)

(
(4−i)+) ≤ 0.

Now, fix r = 1
24−i. Then, the right-sided weighted derivative satisfies

(ωθφ′)
((1

24−i
)+) = − 2ηi

log 24i(i+ 1)θ4−2iθ

14



3.1 Counterexample in three dimensions

and the left-sided weighted derivative is

(ωθφ′)
((1

24−i
)−) = 2(ηi − 1)4i+1

(1
24− 1

)
(i+ 1)−(1−θ)42i(1−θ)

= −2 (2 log 2)−1(i+ 1)4−2i

2 + (2 log 2)−1(i+ 1)4−2i 4
i+1(i+ 1)−(1−θ)42i(1−θ)

= − 2ηi
log 24i(i+ 1)θ4−2iθ

= (ωθφ′)
((1

24−i
)+)

.

At this point we see that ηi is defined so that (ωθφ′)
((1

24−i
)−) = (ωθφ′)

((1
24−i

)+).
Lemma 3.6. Let v be as in (3.7). Then, v is a weak subsolution of (3.6) in B1.

Proof. We define the cut off function ψn : R+ → [0, 1] such that ψn ∈ C1([0, 1]), ψn(r) = 0
for 0 ≤ r ≤ 1

24−n, ψn(r) = 1 for 4−n ≤ r and ψ′n(r) ≤ 4n+1. Consider a nonnegative
ϕ ∈ C∞c (B1). Then, we get

∫
B1
∇v · ∇ϕ =

∫
B1
ωθ∇v · ∇((1− ψn)ϕ) +

∫
B1
ωθ∇v · ∇(ψnϕ) .

Since ψnφ has compact support with its support being a positive distance away from
{x1 = 0}, the second integral is negative according to Lemma 3.5. In the following, we
argue that

∫
B1
ωθ∇v · ∇((1 − ψn)ϕ) is negligible, i.e. it vanishes as n → 0. This then

completes the proof.
We get

∣∣∣∫
B1
ωθ∇v · ∇((1− ψn)ϕ)

∣∣∣ ≤ ∫
B1∩{r<4−n}

ωθ|1− ψn| |∇v · ∇ϕ|

+
∫
M2n

ωθ|ϕ| |∇v · ∇ψn| , (3.12)

where M2n = B1 ∩
{1

24−n < r < 4−n
}
. According to the dominated convergence theorem,

the first integral in (3.12) converges to 0 as n→∞, since ωθ|1− ψn||∇v · ∇ϕ| converges
pointwise to 0, and is dominated by ωθ|∇v · ∇ϕ|, where, using Hölder inequality, we get

∫
B1
ωθ|∇v · ∇ϕ| ≤ ‖∇ϕ‖∞

∫
B1

√
ωθ
√
ωθ|∇v| ≤ ‖∇ϕ‖∞‖ωθ‖

1/2
1 ‖v‖H1(ωθ,B1) <∞ ,

where we define ‖·‖p := ‖·‖Lp(B1) for p ∈ [1,∞].
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3 Construction of the Counterexample

We denote the radial unit vector with ~er. Then, we get for the second integral in (3.12)∫
M2n
|ϕ| |∇v · ∇ψn|ωθ ≤ ‖ϕ‖∞

∫
M2n

ωθ|∇v · 4n+1~er|

. ‖ϕ‖∞
∫ 4−n

1
2 4−n

4n+1ωθ(r)|φ′|r dr

. ‖ϕ‖∞
∫ 4−n

1
2 4−n

(n+ 1)θ4n(1−2θ) dr

= 1
2‖ϕ‖∞(n+ 1)θ4−2nθ ,

where we used Fubini’s theorem, radial coordinates, the definition of ωθ in (3.2) and the
estimate |φ′(r)| . 1

r from Lemma 3.3. Since θ > 0, the sequence (n+ 1)θ4−2nθ converges
to 0 as n→∞. Therefore, the second integral in (3.12) also vanishes.

Existence of a solution
In the following, we solve the following Dirichlet problem

−∇ · ωθ∇u = 0 in B1 ,

u = v on ∂B1 ,
(3.13)

where v is the weak subsolution constructed above. This concludes the proof of Theo-
rem 1.3 using Lemma 2.7. As mentioned in chapter 2, the existence of a weak solution
of (3.13) was not proven in [FSC98]. For that, we argue as in the construction for the
subsolution. First, we show that on a positive distance away from the line {x1 = 0} a
weak solution of (3.13) exists, i.e. a weak solution ũn exists for

−∇ · ωθ∇ũn = 0 in Ωn ,

ũn = v on ∂Ωn ,
(3.14)

where Ωn := B1 ∩
{3

84−n < r < 1
}
and n ∈ N. Afterwards, we prove that the sequence

(ũn)n converges to the desired weak solution of (3.13).

Lemma 3.7. Let v be as in (3.7). Then, a weak solution ũn ∈ H1(ωθ,Ωn) of (3.14)
exists for each n ∈ N. Additionally, the following estimate holds:

‖ũn − v‖H1(ωθ,Ωn) ≤ ‖v‖H1(ωθ,Ω) . (3.15)

Proof. The main idea is that a positive distance away from the line {x1 = 0} the coefficient
field ωθ is bounded away from 0 and from above. Then, the common theory yields the
existence of a weak solution of (3.14). However, for the estimate (3.15) we must argue a
bit differently.
Note that the H1(ωθ,Ωn)-norm is equivalent to the H1(Ωn)-norm, because of

‖ω−1
θ ‖

− 1
2

L∞(Ωn)‖u‖H1(Ωn) ≤ ‖u‖H1(ωθ,Ωn) ≤ ‖ωθ‖
1
2
L∞(Ωn)‖u‖H1(Ωn) , (3.16)
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3.1 Counterexample in three dimensions

and that H1
0 (ωθ,Ωn) ⊂ H1

0 (Ωn) due to Lemma 2.5. Let us define cn := ‖ω−1
θ ‖

−1
L∞(Ωn) and

Cn := ‖ωθ‖L∞(Ωn).
Now, fix n ∈ N, set H := H1

0 (ωθ,Ωn) and consider the bilinear form

L : H ×H → R

(u, v) 7→
∫

Ωn
ωθ∇u · ∇v .

The mapping L is continuous and, using the equivalence to the H1(Ωn)-norm (3.16) and
Poincaré’s inequality in Theorem 2.4, we obtain

L(u, u) ≥ cn‖∇u‖2L2(Ωn) ≥ cnC
−2
P ‖u‖

2
H1(Ωn) ≥ CncnC

−2
P ‖u‖

2
H ,

where CP denotes the constant in Poincaré’s inequality. Note that H1
0 (Ω) := W 1,2

0 (Ω) for
some domain Ω ⊂ Rn (see [Sch13] or [Eva10]).
According to the Lax-Milgram theorem (see [Sch13], Theorem 6.8), a unique vn ∈ H

exists such that
L(vn, ϕ) = −L(v, ϕ) , ∀ϕ ∈ H

and
‖vn‖H ≤ ‖L(v, ·)‖H′ ,

since −L(v, ·) ∈ H ′. Then, ũn = vn + v is a weak solution of (3.14) and it satisfies
ũn − v ∈ H1

0 (ωθ,Ω). Moreover, we get

‖ũn − v‖H1(ωθ,Ωn) ≤ sup
ϕ∈H ,
‖ϕ‖H≤1

∫
Ωn
ωθ∇v · ∇ϕ ≤ sup

ϕ∈H ,
‖ϕ‖H≤1

‖v‖H1(ωθ,B1)‖ϕ‖H ≤ ‖v‖H1(ωθ,B1) .

Lemma 3.8. The Dirichlet problem (3.13) has a weak solution u.

Proof. Using Lemma 3.7, we obtain a sequence (ũn)n of weak solutions of the Dirichlet
problem (3.14) for each n ∈ N. We extend these functions as follows:

un := v + (ũn − v)1Ωn .

Since (ũn − v)1Ωn is in H1
0 (ωθ, B1) and v ∈ H1(ωθ, B1) due to Lemma 3.4, un belongs to

H1(ωθ, B1). Using estimate (3.15), we get for every n ∈ N

‖un‖H1(ωθ,B1) ≤ 2‖v‖H1(ωθ,B1) . (3.17)

Thus, a function u ∈ H1(ωθ, B1) exists such that

un ⇀ u in H1(ωθ, B1) .
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3 Construction of the Counterexample

Now, we have a candidate for a weak solution. Consider a ϕ ∈ C∞c (B1). Then, the
weak convergence implies∫

B1
ωθ∇un · ∇ϕ −−−→

n→∞

∫
B1
ωθ∇u · ∇ϕ .

The claim is proven if we show that
∫
B1
ωθ∇un · ∇ϕ also converges to 0.

Like in the proof of Lemma 3.6, we define the cut off function ψn : R+ → [0, 1] such
that ψn ∈ C1(R), ψn(r) = 0 for 0 ≤ r ≤ 1

24−n, ψn(r) = 1 for 4−n ≤ r and ψ′n(r) ≤ 4n+1.
Then, we get∫

B1
ωθ∇un · ∇ϕ =∫
B1∩

{
r< 3

8 4−n
} ωθ∇v · ∇ϕ+

∫
Ωn
ωθ∇ũn · ∇((1− ψn)ϕ) +

∫
Ωn
ωθ∇ũn · ∇(ψnϕ) .

The first integral converges to 0 as shown in the proof of Lemma 3.6 and the last one
vanishes, because ũn is a weak solution in Ωn and ψnϕ has compact support in Ωn.

Let us observe the second integral which can be decomposed as follows:∣∣∣∫
Ωn
ωθ∇ũn · ∇((1− ψn)ϕ)

∣∣∣ ≤ ∫
B1∩{r<4−n}

ωθ|1− ψn| |∇ũn · ∇ϕ|

+
∫
M2n

ωθ|ϕ| |∇ũn · ∇ψn| , (3.18)

where M2n = B1 ∩
{1

24−n < r < 4−n
}
. According to the dominated convergence theorem,

the first integral in (3.18) converges to 0 as n→∞, since ωθ|1−ψn||∇ũn · ∇ϕ| converges
pointwise to 0, and is dominated by ωθ|∇ũn · ∇ϕ|, where, using Hölder inequality and
estimate (3.17), we obtain∫

B1
ωθ|∇ũn · ∇ϕ| ≤ ‖∇ϕ‖∞

∫
B1

√
ωθ
√
ωθ|∇un| ≤ 2‖∇ϕ‖∞‖ωθ‖

1/2
L1‖v‖H1(ωθ,B1) .

For the second integral in (3.18) we get∫
M2n

ωθ|ϕ| |∇ũn · ∇ψn| ≤ ‖ϕ‖∞‖un‖H1(ωθ,B1)

(∫
M2n

ωθ|∇ψn|2
) 1

2

. 2‖ϕ‖∞‖v‖H1(ωθ,B1)

(∫ 4−n

1
2 4−n

ωθ(r)42n+2r dr
) 1

2

. 2‖ϕ‖∞‖v‖H1(ωθ,B1)

(∫ 4−n

1
2 4−n

(n+ 1)θ4n(1−2θ) dr
) 1

2

= ‖ϕ‖∞‖v‖H1(ωθ,B1)(n+ 1)
θ
2 4−nθ ,

where we used Hölder’s inequality, estimate (3.17), Fubini’s theorem, radial coordinates,
the definition of ωθ in (3.2) and r ≤ 2 · 4−n, if r ∈

(1
24−i, 4−i

)
. Since θ > 0, the sequence

(n + 1)
θ
2 4−nθ converges to 0 as n → ∞. Therefore, the second integral in (3.18) also

vanishes.
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3.2 Counterexample for four and more dimensions

3.2 Counterexample for four and more dimensions

The proof of Theorem 1.4 is similar to the proof of Theorem 1.3 given in the previous
section and only small differences apply. We will repeat the proof of the most lemmas
for better readability and point out the main differences in the beginning of each proof.

Fix d ≥ 4 and p, q ∈ (1,∞] such that

1
p

+ 1
q
≥ 2
d− 1 .

Consider θ ∈ [0, 1] such that

1
p
≥ 2(1− θ)

d− 1 and 1
q
≥ 2θ
d− 1 .

Throughout the proof we write . if ≤ holds up to a positive constant that depends only
on d, p and q. As already mentioned, we also allow the borderline case in comparison to
the case d = 3.

Construction of the Coefficient Field
As stated in Theorem 1.3, we construct the coefficient field on the unit ball B1. Let us
denote the distance to the x1-axis

r :=
√
x2

2 + · · ·+ x2
d

for the entire section. Obviously, we have r ∈ [0, 1]. As we have done before, we define
our coefficient field ωθ : B1 → R+ with

ωθ(x) :=
{

(i+ 1)θ4−2iθ when r ∈
[1

24−i, 4−i
)
,

(i+ 1)−(1−θ)42i(1−θ) when r ∈
[
4−i−1, 1

24−i
)
,

(3.19)

where i ∈ N0. As the definition is identical to the previous one, the same estimates hold.

Lemma 3.9. Let ωθ be as in (3.19). Then, the following inequalities hold in B1

( 1
log 4r

2 log 4
r

)θ
≤ ωθ(x) ≤

(
log 4
r2 log 2

r

)1−θ

.

Proof. See proof of Lemma 3.1.

Combining Lemma 3.9 with Lemma 2.8 we get

Lemma 3.10. Let ωθ be as in (3.19). Then, it satisfies

ωθ ∈ Lp(B1) , ω−1
θ ∈ L

q(B1) .
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3 Construction of the Counterexample

Proof. In this proof we must additionally discuss several cases which do not occur in
Lemma 3.2, i.e. p, q =∞, p = d−1

2(1−θ) and q = d−1
2θ . We define

F (r) :=
(

log 4
r2 log 2

r

)1−θ

and f(r) :=
( 1

log 4r
2 log 4

r

)θ
.

Using Lemma 3.9, it suffices to show

F ∈ Lp(B1) and f−1 ∈ Lq(B1) .

First, consider p ∈ (1,∞). Using Fubini’s theorem and radial coordinates, we obtain∫
B1
|F (x)|p dx .

∫ 1

0
dx1

∫ 1

0
r−2p(1−θ)(log 2

r

)−p(1−θ)
rd−2 dr . (3.20)

If the strict inequality p < d−1
2(1−θ) holds, we get d−2−2p(1−θ) > −1 and (3.20) converges

due to Lemma 2.8. Otherwise, if p = d−1
2(1−θ) , we get d− 2− 2p(1− θ) = −1. Because of

d ≥ 4, this case yields
−p(1− θ) = −d− 1

2 < −1 (3.21)

and (3.20) also converges due to Lemma 2.8. Now, consider p =∞. This yields θ = 1
and F ≡ 1. Therefore we have F ∈ L∞(B1).

Analogously, we get ∫
B1
|f−1

2 |
q dx .

∫ 1

0
r−2qθ(log 4

r

)−qθ
rd−2 dr . (3.22)

If q < d−1
2θ , we get d− 2− 2qθ > −1 and the integral converges by Lemma 2.8. Otherwise,

if q = d−1
2θ , we have d− 2− 2qθ = −1. Because of d ≥ 4, this case yields

−qθ = −d− 1
2 < −1 (3.23)

and (3.22) also converges due to Lemma 2.8. Now, consider q =∞. This yields θ = 0
and f−1 ≡ 1. Therefore we have f−1 ∈ L∞(B1).

Here we see why the borderline case applies in comparison to the spatial dimension
d = 3. We benefit from the fact that the powers of the logarithm terms in (3.20) and
in (3.22) are strictly less than −1. That is why we are able to use Lemma 2.8. In
comparison, for d = 3 the powers of the logarithm terms equal −1 which can be easily
seen with (3.21) and (3.23). Thus, we cannot use Lemma 2.8 for this case.

Construction of the Subsolution
Now, we construct an unbounded weak subsolution of

∇ · (ωθ∇u) = 0 . (3.24)
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3.2 Counterexample for four and more dimensions

We define φ : (0, 1)→ R+ and v : B1 → R+ such that

v(x) := eαdx1 φ(r) , (3.25)

where

φ(r) :=
{
i+ ηiβd(4−i(d−3)r−(d−3) − 1) when r ∈

[1
24−i, 4−i

)
,

i+ 1 + (ηi − 1)(4i+1r − 1)2 when r ∈
[
4−i−1, 1

24−i
)
,

βd :=
(
2d−3 − 1

)−1
, αd :=

√
2d−1βdd(d− 3) , (3.26)

ηi := 2
2 + 2d−4βd(d− 3)(i+ 1)4−2i . (3.27)

For d = 4 we have β4 = 1, α4 = 4
√

2 and ηi = 2
2+(i+1)4−2i which corresponds to the

definition of v in [FSC98], except that α4 there equals 8. As before, ηi and αd are essential
for proving that v is a subsolution on a cylindrical shell. As we will see, our choice of αd
is optimal, i.e for every α′d ≥ αd the function v(x) = eα′dx1 φ(r) is a subsolution of (3.24).
Therefore, it is possible to choose α4 = 8 as it was done in [FSC98]. Furthermore, we
introduce βd to guarantee that φ, and therefore v, is continuous.
We continue as in section 3.1 by proving estimates for ωθ and for the derivatives

φ′(r) =
{
−(d− 3)ηiβd4−i(d−3)r−d+2 when r ∈

(1
24−i, 4−i

)
,

2(ηi − 1)4i+1(4i+1r − 1) when r ∈
(
4−i−1, 1

24−i
)
,

φ′′(r) =
{

(d− 3)(d− 2)ηiβd4−i(d−3)r−d+1 when r ∈
(1

24−i, 4−i
)
,

2(ηi − 1)42i+2 when r ∈
(
4−i−1, 1

24−i
)
.

Lemma 3.11. Let ωθ be as in (3.2) and φ be as in (3.8). Then,

ωθ(r) .

r2θ(log 4
r

)θ when r ∈
[1

24−i, 4−i
)
,

r−2(1−θ)(log 2
r

)−(1−θ) when r ∈
[
4−i−1, 1

24−i
)
,

|φ(r)| .
{

log 4
r when r ∈

(1
24−i, 4−i

)
,

log 2
r when r ∈

(
4−i−1, 1

24−i
)
,

|φ′(r)| .
{
r−1 when r ∈

(1
24−i, 4−i

)
,

r log 2
r when r ∈

(
4−i−1, 1

24−i
)
.

Proof. We proceed as in the proof of Lemma 3.11, but note that ηi and φ are defined
differently. Fix i ∈ N0 and r ∈

(1
24−i, 4−i

)
. Since i+ 1 ≤ log 4

r and 4−i ≤ 2r, we get

ωθ(r) = (i+ 1)θ4−2iθ . r2θ(log 4
r

)θ
.

Additionally, we obtain

|φ(r)| = i+ ηiβd(4−i(d−3)r−(d−3) − 1) ≤ i+ 1 ≤ log 4
r
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3 Construction of the Counterexample

and
|φ′(r)| = (d− 3)ηiβd4−i(d−3)r−d+2 .

1
r
,

where we used ηi ∈ (0, 1), βd(4−i(d−3)r−(d−3) − 1) ∈ [0, 1].
Now, fix r ∈

(
4−i−1, 1

24−i
)
. Since i+ 1 ≤ log 2

r and 4−i ≤ 4r, we get

ωθ(r) = (i+ 1)−(1−θ)42i(1−θ) . r−2(1−θ)(log 2
r

)−(1−θ)
.

Using (ηi − 1) ∈ (−1, 0) and (4i+1r − 1)2 ≥ 0, we obtain

|φ(r)| = i+ 1 + (ηi − 1)(4i+1r − 1)2 ≤ i+ 1 ≤ log 2
r
.

Now, we must argue for φ′(r) a bit differently than before. Using the definition of ηi
in (3.27), we get

|φ′(r)| = 2 2d−4βd(d− 3)(i+ 1)4−2i

2 + 2d−4βd(d− 3)(i+ 1)4−2i 4
i+1(4i+1r − 1) . (i+ 1)4−2i4i+1 . r log 2

r ,

where we needed (4i+1r − 1) ∈ [0, 1].

As in section 3.1, we divide the proof that v is a subsolution of (3.24) into three steps.

Lemma 3.12. Let v be as in (3.25). Then, v ∈ H1(ωθ, B1).

Proof. This proof is almost identical to the one from Lemma 3.4. The only difference is
that some integrals are slightly different due to the spherical transformation. To show
v ∈ H1(ωθ, B1), it is sufficient to approximate it with Lipschitz functions with respect to
the H1(ωθ, B1)-norm, since every Lipschitz function can be approximated by C∞(B1)
functions. Define for n ∈ N

φn(r) := φ(r)1{r≥4−n} + n1{r<4−n} and vn(x) := eαx1 φn(r) .

Each function vn is Lipschitz-continuous and vn and ∇vn converge pointwise to v and
∇v, respectively. Moreover,

‖v − vn‖H1(ωθ,B1) =
∫
B1
ωθ(r)(|∇v(x)−∇vn(x)|2 + |v(x)− vn(x)|2) dx

=
∫
B1

e2αx1 ωθ(r)
(
(α2 + 1)|φ(r)− n|2 + |φ′(r)|2

)
1{r<4−n}(r) dx

.
∫ 1

0
ωθ(r)(|φ(r)|2 + |φ′(r)|2) rd−2 dr , (3.28)

where we needed

|∇v(x)−∇vn(x)| = |∂1v(x)− ∂1v(x)|+ |∂rv(x)− ∂rvn(x)|
= α e2αx1 |φ(r)− φn(r)|+ e2αx1 |φ′(r)− φ′n(r)| ,
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3.2 Counterexample for four and more dimensions

Fubini’s theorem, radial coordinates and φ(r) ≥ n if r < 4−n.
If (3.28) converges, the claim follows by the dominated convergence theorem. We write∫ 1

0
ωθ(r)(|φ(r)|2 + |φ′(r)|2) rd−2 dr =

∞∑
i=0

∫ 4−i

1
2 4−i

ωθ(r)(|φ(r)|2 + |φ′(r)|2) rd−2 dr

+
∫ 1

2 4−i

4−i−1
ωθ(r)(|φ(r)|2 + |φ′(r)|2) rd−2 dr

and use Lemma 3.11 to get
∞∑
i=0

∫ 4−i

1
2 4−i

ωθ(r)|φ(r)|2 rd−2 dr .
∫ 1

0

(
log 4

r

)2+θ
rd−2+2θ dr ,

∞∑
i=0

∫ 4−i

1
2 4−i

ωθ(r)|∂rφ(r)|2 rd−2 dr .
∫ 1

0

(
log 4

r

)θ
rd−4+2θ dr ,

∞∑
i=0

∫ 1
2 4−i

4−i−1
ωθ(r)|φ(r)|2 rd−2 dr .

∫ 1

0

(
log 2

r

)1+θ
rd−4+2θ dr ,

∞∑
i=0

∫ 1
2 4−i

4−i−1
ωθ(r)|∂rφ(r)|2 rd−2 dr .

∫ 1

0

(
log 2

r

)1+θ
rd−2+2θ dr .

All these integrals converge due to Lemma 2.8.

Lemma 3.13. Let v be as in (3.25) and γ2i := 4−i, γ2i+1 := 1
24−i for i ∈ N0. Then, v

is a weak subsolution of (3.24) in each cylindrical shell B1 ∩ {γN < r < 1} with N ∈ N.

Proof. We proceed as in the proof of Lemma 3.5. Fix N ∈ N and denote Ω := B1∩{γN <
r < 1}. Furthermore, let ϕ ∈ C∞c (Ω) be nonnegative. Additionally, we define the
cylindrical shells with

M2i := B1 ∩
{1

24−i < r < 4−i
}

and M2i+1 := B1 ∩
{
4−i−1 < r < 1

24−i
}
,

the left-sided weighted derivative with (ωθφ′)(r−) and the right-sided weighted derivative
with (ωθφ′)(r+). Since ωθ is constant on each Mk, we obtain via integration by parts

∫
B1
ωθ∇v · ∇ϕ =

N∑
k=0

∫
Mk

ωθ∇v · ∇ϕ

=
N∑
k=0
−
∫
Mk

ωθ∆vϕ+
∫
∂Mk

ωθ∇v · ~nϕ

=
N∑
k=0
−
∫
Mk

ωθ∆vϕ

+
N−1∑
k=1

∫
B1∩{r=γk}

eαx1
(
(ωθφ′)(γ−k )− (ωθφ′)(γ+

k )
)
ϕ(x) dx ,
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3 Construction of the Counterexample

where ~n denotes the unit surface normal. Since ϕ is compactly supported in Ω, the
boundary integrals on the sets B1 ∩ {r = 1} and B1 ∩ {r = γN} vanish. Thus, it is
sufficient to prove

(i) −∆v ≤ 0 in Mk,
(ii) (ωθφ′)(γ−k )− (ωθφ′)(γ+

k ) ≤ 0 for every k.

Proof of (i). Using spherical transformation, we obtain

−∆v(x) = − eαdx1

(
α2
dφ(r) + d− 2

r
φ′(r) + φ′′(r)

)
,

hence −∆v ≤ 0 in Mk provides

α2
dφ(r) + d− 2

r
φ′(r) + φ′′(r) ≥ 0 .

For r ∈
(1

24−i, 4−i
)
, we get

α2
dφ(r) + d− 2

r
φ′(r) + φ′′(r) = α2

d

(
i+ ηiβd(4−i(d−3)r−(d−3) − 1)

)
+ d− 2

r

(
−(d− 3)ηiβd4−i(d−3)r−(d−2))

+ (d− 3)(d− 2)ηiβd4−i(d−3)r−(d−1)

≥ α2
di ≥ 0 ,

where the second and third term cancel each other, and we used ηiβd(4−i(d−3)r−(d−3)−1) ≥
0.

Now, fix r ∈
(
4−i−1, 1

24−i
)
. Then, it follows that

α2
dφ(r) + d− 2

r
φ′(r) + φ′′(r) (3.29)

= 2(ηi − 1)42i+2
(

α2
d(i+ 1)

2(ηi − 1)42i+2 + α2
d(4i+1r − 1)2

2 · 42i+2 + d− 2
r

(r − 4−i−1) + 1
)
.
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3.2 Counterexample for four and more dimensions

Furthermore, we get
α2
d(i+ 1)

2(ηi − 1)42i+2 + α2
d(4i+1r − 1)2

2 · 42i+2 + d− 2
r

(
r − 4−i−1)+ 1

= d− 1− 4−i−1(d− 2)
r

+ α2
d

2 · 42i+2

(
i+ 1
ηi − 1 + (4i+1r − 1)2

)
≤ d− 1− 1

2(d− 2)− α2
d

2 · 42i+2

(
i+ 1
1− ηi

− 1
)

= d

2 −
α2
d

2 · 42i+2

((i+ 1)(2 + 2d−4βd(d− 3)(i+ 1)4−2i)
2d−4βd(d− 3)(i+ 1)4−2i − 2d−4βd(d− 3)4−2i

2d−4βd(d− 3)4−2i

)
= d

2 −
α2
d

2 · 42i+2
2 + 2d−4βd(d− 3)i4−2i

2d−4βd(d− 3)4−2i

= d

2 −
α2
d

2dβd(d− 3) −
α2
di

2 · 42i+2

= −α
2
d

2 i4−2i−2 ≤ 0 ,

where we used −1
r ≤ −2 · 4i, (4i+1r − 1)2 ≤ 1 and the definitions of ηi in (3.25) and αd

in (3.26). This and (ηi−1) ≤ 0 imply that the term (3.29) is greater than 0. In particular,
note that αd was defined so that the first and second summand in the penultimate line
cancel each other. A greater value for αd yields that (3.29) is even smaller.
Proof of (ii). Consider r = 4−i. Then, the right-sided derivative satisfies

φ′
(
(4−i)+) = φ′

(
(4−(i−1)−1)+) = 2(ηi−1 − 1)4i(4i4−i − 1) = 0

and the left-sided derivative

φ′
(
(4−i)−

)
= −(d− 3)ηiβd4−i(d−3)4i(d−2) < 0 .

Thus, (ωθφ′)
(
(4−i)−

)
− (ωθφ′)

(
(4−i)+) ≤ 0.

Now, fix r = 1
24−i. Then, the right-sided weighted derivative is

(ωθφ′)
((1

24−i
)+) = −(d− 3)ηiβd4−i(d−3)2d−24i(d−2)(i+ 1)θ4−2iθ

= −(d− 3)ηiβd2d−24i(i+ 1)θ4−2iθ

and the left-sided weighted derivative

(ωθφ′)
((1

24−i
)−) = 2(ηi − 1)4i+1

(1
24− 1

)
(i+ 1)−(1−θ)42i(1−θ)

= −2 2d−4βd(d− 3)(i+ 1)4−2i

2 + 2d−4βd(d− 3)(i+ 1)4−2i 4
i+1(i+ 1)−(1−θ)42i(1−θ)

= −(d− 3)ηiβd2d−24i(i+ 1)θ4−2iθ

= (ωθφ′)
((1

24−i
)+)

.

At this point we see that ηi is defined so that (ωθφ′)
((1

24−i
)−) = (ωθφ′)

((1
24−i

)+).
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3 Construction of the Counterexample

Lemma 3.14. Let v be as in (3.25). Then, v is a weak subsolution of (3.24) in B1.
Proof. The only difference between the proof of Lemma 3.6 and this one is that some
integrals are slightly different due to the spherical transformation. We define the cut
off function ψn : R+ → [0, 1] such that ψn ∈ C1([0, 1]), ψn(r) = 0 for 0 ≤ r ≤ 1

24−n,
ψn(r) = 1 for 4−n ≤ r and ψ′n(r) ≤ 4n+1. Consider a nonnegative ϕ ∈ C∞c (B1). Then,
we get ∫

B1
∇v · ∇ϕ =

∫
B1
ωθ∇v · ∇((1− ψn)ϕ) +

∫
B1
ωθ∇v · ∇(ψnϕ) .

Since ψnφ has compact support with its support being a positive distance away from
{x1 = 0}, the second integral is negative according to Lemma 3.13. In the following, we
argue that

∫
B1
ωθ∇v · ∇((1 − ψn)ϕ) is negligible, i.e. it vanishes as n → 0. This then

completes the proof.
We get ∣∣∣∫

B1
ωθ∇v · ∇((1− ψn)ϕ)

∣∣∣ ≤ ∫
B1∩{r<4−n}

ωθ|1− ψn| |∇v · ∇ϕ|

+
∫
M2n

ωθ|ϕ| |∇v · ∇ψn| , (3.30)

where M2n = B1 ∩
{1

24−n < r < 4−n
}
. According to the dominated convergence theorem,

the first integral in (3.30) converges to 0 as n→∞, since ωθ|1− ψn||∇v · ∇ϕ| converges
pointwise to 0, and is dominated by ωθ|∇v · ∇ϕ|, where, using Hölder inequality, we get∫

B1
ωθ|∇v · ∇ϕ| ≤ ‖∇ϕ‖∞

∫
B1

√
ωθ
√
ωθ|∇v| ≤ ‖∇ϕ‖∞‖ωθ‖

1/2
1 ‖v‖H1(ωθ,B1) <∞ .

Then, we get for the second integral in (3.30)∫
M2n
|ϕ| |∇v · ∇ψn|ωθ ≤ ‖ϕ‖∞

∫
M2n

ωθ|∇v · 4n+1~er|

. ‖ϕ‖∞
∫ 4−n

1
2 4−n

4n+1ωθ(r)|φ′|rd−2 dr

. ‖ϕ‖∞
∫ 4−n

1
2 4−n

(n+ 1)θ4n(4−d−2θ) dr

= 1
2‖ϕ‖∞(n+ 1)θ4n(3−d−2θ) ,

where we used Fubini’s theorem, radial coordinates, the definition of ωθ in (3.19), the
estimate |φ′(r)| . 1

r from Lemma 3.11 and r ≤ 2 · 4−n. The sequence (n+ 1)θ4n(3−d−2θ)

converges to 0 as n→∞. Therefore, the second integral in (3.30) also vanishes.

Existence of a solution
In the following, we solve the following Dirichlet problem

−∇ · ωθ∇u = 0 in B1 ,

u = v on ∂B1 ,
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3.2 Counterexample for four and more dimensions

where v is the weak subsolution constructed above. This concludes the proof of Theo-
rem 1.3 using Lemma 2.7. For that, we argue as in the construction for the subsolution.
First, we show that on a positive distance away from the line {x1 = 0} a weak solution
of (3.13) exists, i.e. a weak solution ũn exists for

−∇ · ωθ∇ũn = 0 in Ωn ,

ũn = v on ∂Ωn ,
(3.31)

where Ωn := B1 ∩
{3

84−n < r < 1
}
and n ∈ N. Afterwards, we prove that the sequence

(ũn)n converges to the desired weak solution of (3.13).

Lemma 3.15. Let v be as in (3.25). Then, a weak solution ũn ∈ H1(ωθ,Ωn) of (3.31)
exists for each n ∈ N. Additionally, the following estimate holds:

‖ũn − v‖H1(ωθ,Ωn) ≤ ‖v‖H1(ωθ,Ω) . (3.32)

Proof. See proof of Lemma 3.7.

Lemma 3.16. The Dirichlet problem (3.13) has a weak solution u.

Proof. As before, the only difference between the proof of Lemma 3.8 and this one is
that some integrals are slightly different due to the spherical transformation. Using
Lemma 3.15, we obtain a sequence (ũn)n of weak solutions of the Dirichlet problem (3.31)
for each n ∈ N. We extend these functions as follows:

un := v + (ũn − v)1Ωn .

Since (ũn − v)1Ωn is in H1
0 (ωθ, B1) and v ∈ H1(ωθ, B1) due to Lemma 3.12, un belongs

to H1(ωθ, B1). Using estimate (3.32), we get for every n ∈ N

‖un‖H1(ωθ,B1) ≤ 2‖v‖H1(ωθ,B1) . (3.33)

Thus, a function u ∈ H1(ωθ, B1) exists such that

un ⇀ u in H1(ωθ, B1) .

Now, we have a candidate for a weak solution. Consider a ϕ ∈ C∞c (B1). Then, the
weak convergence implies∫

B1
ωθ∇un · ∇ϕ −−−→

n→∞

∫
B1
ωθ∇u · ∇ϕ .

The claim is proven if we show that
∫
B1
ωθ∇un · ∇ϕ also converges to 0.

We define the cut off function ψn : R+ → [0, 1] such that ψn ∈ C1(R), ψn(r) = 0 for
0 ≤ r ≤ 1

24−n, ψn(r) = 1 for 4−n ≤ r and ψ′n(r) ≤ 4n+1. Then, we get∫
B1
ωθ∇un · ∇ϕ =∫
B1∩

{
r< 3

8 4−n
} ωθ∇v · ∇ϕ+

∫
Ωn
ωθ∇ũn · ∇((1− ψn)ϕ) +

∫
Ωn
ωθ∇ũn · ∇(ψnϕ) .
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3 Construction of the Counterexample

The first integral converges to 0 as shown in the proof of Lemma 3.14 and the last one
vanishes, because ũn is a weak solution in Ωn and ψnϕ has compact support in Ωn.

Let us observe the second integral which can be decomposed as follows:∣∣∣∫
Ωn
ωθ∇ũn · ∇((1− ψn)ϕ)

∣∣∣ ≤ ∫
B1∩{r<4−n}

ωθ|1− ψn| |∇ũn · ∇ϕ|

+
∫
M2n

ωθ|ϕ| |∇ũn · ∇ψn| , (3.34)

where M2n = B1 ∩
{1

24−n < r < 4−n
}
. According to the dominated convergence theorem,

the first integral in (3.34) converges to 0 as n→∞, since ωθ|1−ψn||∇ũn · ∇ϕ| converges
pointwise to 0, and is dominated by ωθ|∇ũn · ∇ϕ|, where, using Hölder inequality and
estimate (3.33), we get∫

B1
ωθ|∇ũn · ∇ϕ| ≤ ‖∇ϕ‖∞

∫
B1

√
ωθ
√
ωθ|∇un| ≤ 2‖∇ϕ‖∞‖ωθ‖

1/2
L1‖v‖H1(ωθ,B1) .

For the second integral in (3.34) we obtain

∫
M2n

ωθ|ϕ| |∇ũn · ∇ψn| ≤ ‖ϕ‖∞‖un‖H1(ωθ,B1)

(∫
M2n

ωθ|∇ψn|2
) 1

2

. 2‖ϕ‖∞‖v‖H1(ωθ,B1)

(∫ 4−n

1
2 4−n

ωθ(r)42n+2rd−2 dr
) 1

2

. 2‖ϕ‖∞‖v‖H1(ωθ,B1)

(∫ 4−n

1
2 4−n

(n+ 1)θ4n(4−d−2θ) dr
) 1

2

= ‖ϕ‖∞‖v‖H1(ωθ,B1)
(
(n+ 1)θ4n(3−d−2θ)) 1

2 ,

where we used Hölder’s inequality, estimate (3.33), Fubini’s theorem, radial coordinates,
the definition of ωθ in (3.19) and r ≤ 2 · 4−n, if r ∈

(1
24−i, 4−i

)
. Since the sequence

(n+1)θ4n(3−d−2θ) converges to 0 as n→∞, the second integral in (3.34) also vanishes.
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