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Abstract

We study a certain integrability condition on the coefficient field of linear, nonuniformly
elliptic equations which yields the local boundedness for solutions. Such an integrability
condition was found by Trudinger and then improved by P. Bella and M. Schéffner. By
modifying a counterexample of B. Franchi, R. Serapioni and F. Serra Cassano for the
complementary condition in the spatial dimension d = 4, we prove the sharpness of the
condition of P. Bella and M. Schéffner. Contrary to what was previously assumed by
the authors, we will see that their example is suitable not only for d > 4, but also for
d = 3 and even clarifies the borderline case of the above-mentioned condition for d > 4.
The proof of sharpness is based on the proof of B. Franchi, R. Serapioni and F. Serra
Cassano, with some arguments discussed in more detail.
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1 Introduction and Main Results

Consider the linear, second order, scalar elliptic equation
V-aVu=0, (1.1)

where d > 2 and a : Q — R%*4 is a measurable matrix field on a domain  c R%.
Moreover, we define
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and suppose A and p are nonnegative measurable functions. The equation (1.1) is often
used in physics to model an equilibrium, where the solution v can be interpreted as a
density of some physical quantity. Thus, it is interesting to study the properties of a
solution u of (1.1) depending on the coefficient field a. Before we now list some results,
note that the term weak solution will be defined later.

In [De 57] De Giorgi and in [Nas58] Nash proved that weak solutions of (1.1) are Holder
continuous, if A1 and yu are essentially bounded (i.e. a is uniformly elliptic). In [Tru71]
Trudinger or in [MS68] Murthy and Stampacchia considered A=! € L4(Q) and p € LP(Q2)
with p,q € (1,00] and proved that, if % + % < %, where é := 0, then weak solutions
of (1.1) are locally bounded. This result was improved by Bella and Schéffner [BS19] by
assuming p and ¢ satisfy the pq-condition % + % < %. To be more precise, they proved
the following theorem.

(1.2)

Theorem 1.1. Fiz d > 2, a domain Q C R? and p,q € (1, 00] satisfying the pq-condition

1 1 2

-+ < —. 1.3

p * q d—1 (13
Let a : Q — R¥™9 be such that A and p given in (1.2) are nonnegative and satisfy
ALe L9(Q), u € LP(Q). Then, any weak solution u of (1.1) in Q is locally bounded.
More precisely, for every v > 0 there exists ¢ = ¢(v,d,p,q) € [1,00) such that for any
ball Br C Q,R > 0, it holds that

1
2 (14+1) Al
lull e () < cA(BR)> 05 (]{BRM ) ,
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where § := min{ﬁ i 2—1(] >0,p = p%l, and for every measurable set S C Q

= () ()’



1 Introduction and Main Results

We study whether the pg-condition (1.3) is sharp. Are there coefficient fields that
satisfy A™1 € L9(Q) and p € LP(Q) with
1 1 2
Tyls 2 (1.4)
p q d—1
such that the weak solutions are unbounded on a ball?
The spatial dimension d = 2 is already discussed in [BS19], where p =1 and ¢ = 1 in
the complementary case. To be more precise, the following proposition was proven there.

Proposition 1.2. Fiz a domain Q C R?. Let a : Q — R?*? be measurable such that \
and p given (1.2) are nonnegative and satisfy %,,u € LY(Q). Then, there exists ¢ € [1,00)
such that for every weak solution u of (1.1) and for any ball Br C Q

1 1
1\ 2 2
oy <o, ) (505 £, )

Thus, it remains to study d > 3. Indeed, for d = 4 Franchi, Serapioni and Serra Cassano
constructed in [FSC98] for % + é > % a coefficient field a such that a weak solution
of (1.1) is unbounded on the unit ball. They also claim that their counterexample can be
generalised to the case d > 4. In this bachelor thesis we will see how their counterexample
can be modified. Moreover, it turns out that their counterexample also works for the
borderline case % + % = 431 and by a simple modification even for d = 3. However, the
modification for d = 3 does not cover the borderline case. Thus, it is still not clear if for
% + % = 227 = 1 weak solutions of (1.1) are locally bounded.

To be more exact, we will prove in this bachelor’s thesis the following theorems.

Theorem 1.3. Let d =3, Q = By C R? denote the unit ball and p,q € (1,00) satisfy

11
T (1.5)
P oq

Then, there exists a scalar field w : By — (0,00) with w™t € LY(By) and w € LP(By) such
that there exists an unbounded weak solution of

V-wVu=0.

Theorem 1.4. Fiz d > 4, let Q = By C RY denote the unit ball and p,q € (1,00] satisfy

2
>

TS do1
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Then, there exists a scalar field w : By — (0,00) with w™t € LY(By) and w € LP(By) such
that there exists an unbounded weak solution of

V-wVu=0.



Note that in Theorem 1.3 the case p = co or ¢ = oo cannot occur, otherwise the
inequality (1.5) cannot be satisfied. Moreover, the scalar field w can be identified by
a = wly, where I; denotes the d x d identity matrix. Additionally, we obtain A = w and
i = w, where A and p are as in (1.2).

This bachelor’s thesis is organised as follows: In chapter 2, we clarify the meaning of
weak solutions in this setting by introducing a suitable function space. We also prove
the weak maximum principle and some auxiliary lemmas that we will use in chapter 3.
In particular, we prove that it is sufficient to construct an unbounded subsolution for a
given coefficient matrix. Finally, in chapter 3 we prove Theorem 1.3 and Theorem 1.4.
We first discuss the case d = 3 in detail by motivating the steps of the proof. With d > 4,
we proceed almost in the same way as in the case d = 3.



2 Auxiliary Lemmas

As in [FSC98], we will prove Theorem 1.3 and Theorem 1.4 by constructing a coefficient
field and an unbounded weak subsolution instead of an unbounded weak solution. The
authors claimed that this follows, because of the weak maximum principle, and do not
go into this in detail. We will take a closer look at this argument.

For this we will first clarify the meaning of weak subsolution. Afterwards, we prove the
weak maximum principle, such that we are able to prove that it is sufficient to construct
a weak subsolution, which will be our first auxiliary lemma. The second one is just a
simple lemma which we will need for some calculations later.

Definition 2.1. Let Q C R? be a domain and a : Q — R%¥? be a coefficient field such
that 11, A > 0 given in (1.2) satisfy 3, € L*(Q). Then, the function spaces H'(a,Q) and
H{(a,Q) are, respectively, defined as the completion of C'1(2) and C}(Q) with respect to

the norm ||-|| g1 (q,0) = v/ £L1(:, ), where
L(u,v) ::/ a(x)Vu(x) - Vo(z)dz,
Q

L1(u,v) = L(u,v) +/Qu(:c)u(:v)v(:v) dz.

We say that u is a weak solution of (1.1) if and only if u € H'(a,) and L(u, ) = 0 for
every ¢ € H}(a,). Moreover, we call u a weak subsolution if and only if u € H(a, )
and

Vo € Hi(a,Q), ¢ > 0: L(u,¢) <0.

Note that H'(a,$2) and H}(a, Q) equipped with £; are Hilbert spaces. Furthermore, if
one wants to prove that some function u € H'(a, ) is a weak solution of (1.1), it suffices
to show L(u, ) = 0 for every ¢ € C°(2), since C°(12) is dense in Hi(a, ). The same
holds for weak subsolutions. Finally, let us write, for simplicity, H'(w, Q) := H'(wly, Q)
and H}(w, Q) = H} (wly, Q) if w is a scalar field.

Weak Maximum Principle

The following two lemmas exhibit the properties of functions in Hg (a, Q) required for the
proof of a maximum principle. Further properties of H!(a,(2) and H{ (a, ) were treated
by Trudinger in [Tru73] and [Tru71]. Our first lemma can also be looked up there and
can be considered as a generelised chain rule.

Lemma 2.2. Let Q C R" be a domain and g : R — R uniformly Lipschitz-continuous
with g(0) = 0. Consider v € H'(a,Q) or u € H(a,f). Then, the composition g(u)
belongs to H(a,Q) or Hi(a,Q), respectively, and the chain rule applies, i.e.

V(g(u)) = ¢ (u)Vu a.e. in ).



By Lemma 2.2 and g(z) = 21,0 we get
Remark 2.3. Let u € Hi(a,9). Then, u™ := sup{u, 0} € H}(a, ) and
Vu' =Vu leuso0y a.e. in .

In the following lemma we prove that the function space H}(a,2) is a subset of a
Sobolev space. For this purpose we will use Poincaré’s inequality.
Theorem 2.4 (Poincaré’s inequality). Assume Q C R? is open and bounded. Suppose u
belongs to the Sobolev space Wol’p(Q) for some p € [1,00]. Then, we have the estimate
[ullwir@) < CplIVullLray
where the constant Cp depends only on p, d and ).

A proof of this theorem and more about Sobolev spaces like construction, definition
and properties can be found in [Eval0] or [Sch13]. Note that we need some restrictions for
the use of Poincaré’s inequality, i.e. a bounded domain and the function space H{(a,)
instead of H'(a,Q). But as we will see, this is sufficient for our purposes.

Lemma 2.5. Let Q C R? be a bounded domain and \ given in (1.2) satisfy A=t € LI(R)
for q € [1,00]. Consider u € H}(a, ) and define

. % when ¢ € [1,00),
¢ 2 when ¢ = 00.

Then, u belongs to the Sobolev space Wol’q*(Q) or, more precisely,

2 2 1y—1
[l @y < CEIN oy | aVu- Va, (2.1)
where Cp denotes the constant from Poincaré’s inequality in Theorem 2.4.

Proof. 1t suffices to show the inequality (2.1) holds for a smooth function with compact

support u € H'(a, ), because every function of H{(a,) or Wol’q* (©) can be approx-
imated by smooth functions with compact support with respect to their norms (see
Definition 2.1 and [Sch13]). Consider u € C2°(Q) N H'(a, ). In the case ¢ € [1,00) we
obtain, using Holder’s inequality,

2 AT 29 a —1 2 —1
IVl o = ([ S Vel ) T <IN e [ NVl < 1Ny [ aVu- T

N+
and, if ¢ = oo,

IVull720 :/Q:\\|VU2 < ”)\71HL°°(Q)/Q)“vu’2 < H/\71HL°°(Q)/QGJVU'VU~

By Poincaré’s inequality in Theorem 2.4, we get
-1 2 =21, 12
Ny [ aVu- Va2 [Vulde @) 2 Co?lulle @)

which yields estimate (2.1). O



2 Auxiliary Lemmas

Next, we prove the maximum principle. For this purpose, let us say a function
u € H'(a, ) satisfies u < m on 99 for some m > 0 if (u —m)* := sup{u —m, 0} belongs
to Hi(a, Q).

Theorem 2.6 (Weak Maximum Principle). Let Q C R? be a bounded domain, q € [1, 00
and a : Q — R¥ be a coefficient field such that p, A\ > 0 given in (1.2) satisfy % € L1(Q)
and p € LY (). If a weak subsolution u € H'(a,$) of (1.1) satisfies u < m on 9§ for
some m > 0, then

u<m a.e. in §2.

Proof. We define ¢ := (u—m)* = sup{u—m, 0}. The maximum principle is proven when
we show ¢ = 0. According to Remark 2.3, ¢ belongs to H{(a,2) and Ve = Vulg,s0.
Since u is a weak subsolution and ¢ > 0, we obtain

0> L(u,p) = / aVu -V
Q
= / aVu - Vulg,soy
Q

:/ano'ch
Q

> CEQHA_IHZ(}(Q)”80||12/V1,q*(9)
>0,

where we used the estimate (2.1) in Lemma 2.5. Hence, we obtain [|¢|y1.4* () = 0 which
implies that ¢ = 0. O

Auxiliary Lemmas
Now, we move on to the announced auxiliary lemmas. For this purpose, let us say the
functions u,v € H'(a, Q) satisfy u = v on 9Q if u — v belongs to H}(a, Q).

Lemma 2.7. Let Q C R? be a bounded domain and \ given in (1.2) satisfy \=* € L9(R)
for q € [1,00]. Assume that an unbounded weak subsolution v of (1.1) and a weak solution
w of (1.1) exist. If u =wv on 9, then u is unbounded.

Proof. Since v —u € H}(a,), we have (v —u)* € Hi(a,) due to Remark 2.3. Thus,
we get v —u < 0 on 9NQ. Additionally, v — u is a weak subsolution of (1.1) and, according
to the weak maximum principle, we obtain

v—u<0 a.e. in .
O

Note that with this lemma it suffices to construct an unbounded weak subsolution
to prove Theorem 1.3 and Theorem 1.4, but we have still to show that such a solution
exists.

Finally, we prove the following simple lemma that we need for some calculations.



Lemma 2.8. Let v > 1. The integral

1
/0 P (log 2)? dr (2.2)
converges in case p > —1 for all g € R and case p=—1 if ¢ < —1.

Proof. We first rewrite the integral by a simple change of variables, i.e. z = log I,

1 o0
/ ™ (log 2)* dr = 4Pt / e *PHD) 204y, (2.3)
0 logy

Note that log~y > 0, because v > 1. For p = —1, the integral simplifies to

[o.¢]
'ypH/ z9dz,
logy
which converges for ¢ < —1.
If p > —1, the function f(z) := e#(P+1) 24 is bounded by some constant ¢ := c(p,q) >0
on (log~, 00) and it is decreasing from some point zy > log~. Therefore, the integral (2.3)
can be estimated for N > zy by

N (cN—i— Z e n(p+1) nq> )
n=N

The series converges due to the ratio test and therefore the integral (2.2) also does. [



3 Construction of the Counterexample

In this chapter, we construct counterexamples which provide a proof of Theorem 1.3
and Theorem 1.4. We proceed in a similar way as in [FSC98]. The construction
consists of three parts. In the first one, we define the coefficient field which satisfies the
complementary pg-condition (1.4). According to Lemma 2.7, it is sufficient to construct
an unbounded subsolution and to show the existence of a certain weak solution, which
happens in the second and in the third part.

3.1 Counterexample in three dimensions

Fix d = 3 and p, q € (1,00) such that

1 1
-+ ->1. (3.1)
P q

Consider 6 € (0, 1) such that

1 1

->(1-9) and ->90.

p q
Note that we have 6 ¢ {0, 1}, because of p,q € (1, 00). Throughout the proof we write <
if < holds up to a positive constant that depends only on p and gq.

Construction of the Coefficient Field

As stated in Theorem 1.3, we construct the coefficient field on the unit ball B;. The
idea of the proof is to construct a coefficient field such that a weak solution becomes
unbounded around the xi-axis. The simplest idea is to consider coefficient fields that are
independent of x; and depend only on the distance from {x; = 0}. Let us denote this

distance
ri= /23 + 23
: 2 3

for the entire section. Obviously, we have r € [0, 1]. Furthermore, it is advantageous for
a coefficient field to consider a step function. Like in [FSC98], we define our coefficient
field wg : By — RT by

j+1)04729 hen r € [§477, 47
wy(x) := {(Z +1) when 7€ [347,47), (3.2)

(i +1)~(1=9420-9)  when r € [4771,1477)

where 7 € Ng. Let us call the intervals of the form [%4”, 47%) even and those of the form
(471 %4*1) odd. We note that the values of wy alternate in the annuli between very



3.1 Counterexample in three dimensions

small and very large values. In fact, wy approximates on the odd intervals a function in
LP(B;) and on the even intervals a function whose inverse is in L4(Bj), as we will see in
the following two lemmas. The statements contained therein were formulated in [FSC98],
but not proven.

Lemma 3.1. Let wy be as in (3.2). Then, the following inequalities hold in By

1-6
1 4\? log 4
——r“log—| < < | - : .
(log4r Ogr) S wol@) < <7’210g§> (3:3)
Proof. First, we define
1 4\° logd \ "
2 0g
= log — d F(r):= . 4
£0) = (prprlos)  ad ) ( = 3> (3.4)

A simple calculation reveals that f' > 0 and F’ < 0 for » € (0,1). In particular,
F is decreasing and f is increasing on (0,1). Therefore, it is sufficient to show the
inequalities (3.3) at the right end of the even and odd intervals.

Case 1. Let r € [%4”,4"). Since the function f is increasing, we have

0

0
£0) < 167 = (gt osa™)) = (BG4 1D47) = (o).

The monotonicity of F' yields the following;:

o 2i 1, 1-0 2i
F(r) > F(47i) = ( log 4 471 g4) _ 4 wp (1) > we(r).

1-0
- 4=2%]og(2 - 4’)) (10g(41+1) i+1

Notice, we used the monotonicity of the logarithm and 4% >4 + 1.
Case 2. Let r € [4771,147%). We obtain analogously

» 4logda  \'7? 42 N0
FO2 PG = (mapeger) = (7)) ¢ 2e)

where we used 4'~% > 1. Additionally, we have
f(r) < f(l4fi) _ <14211 (2 4i+1))9 B 421'(19)422‘(2' N 3>9 o)

where we needed

aifi 3\ _ —(1-0)
4 Z + g S (Z + 1) R

which can easily be proven by an induction argument. O

Lemma 3.2. Let wy be as in (3.2). Then, it satisfies

wg € LP(B1)  and  w,' € Li(By).



3 Construction of the Counterexample

Proof. Let F, f be as in (3.4). Using Lemma 3.1, it suffices to show
FecIP’(By) and f'eliyB).

Using Fubini’s theorem and radial coordinates, we obtain

r)Pde < /dxl/ —2(1=0) (3 g2)™" P00 4. (3.5)

Since according to (3.1) the inequality p < 1—i9 holds, we have 1 — 2p(1 — 0) > —1
and (3.5) converges due to Lemma 2.8.
Analogously, we get

Bl

1
—_ — —qb
/Bl|f 1|qu,§/0 r 2q6(10g%) Ty dr .
and the integral converges by Lemma 2.8, since g < % implies —2¢0 + 1 > —1. O

Construction of the Subsolution
As discussed before, we construct an unbounded weak subsolution of

V- (wgVu) =0. (3.6)

We define v : B — R*
o(z) = €1 g(r), (3.7)

where ¢ : (0,1) — R
o(r) = i+ 1y log 4 | when r € [%4%,4;@') ! (3.8)
i+ 1+ (g — 14" r—1)? whenre [47771 2477,
12 2

Q= —, ni = (3.9)

log 2 2+ (2log2)~1(i +1)4=2% "

These definitions are similar to those in [FSC98|. Only «, n; and ¢ on the even intervals
are adapted to the spatial dimension d = 3.

Like in [FSC98], we divide the proof that v is a weak subsolution of (3.6) into three
lemmas. In the first one, we show v € H'(w, By). Then, we prove that v is a weak
subsolution in a positive distance away from the z;-axis. Arguing that the contributions
from a tiny neighborhood of the axis {x1 = 0} to the integral in the weak formulation is
negligible, we conclude that v is a subsolution in B;.

Before we begin with the proof, let us take a closer look at v. The number o and
n; in (3.9) are especially important for the second step. Moreover, it decreases on the
interval [4771 47 from i+ 1 to i for i € Ng. Hence, ¢ is unbounded, because it becomes
infinite as  — 0. Furthermore, we notice that ¢ equals i +7; at r = %4 . Thus, ¢,
and therefore v, is continuous in B; \ {z1 = 0}.

10



3.1 Counterexample in three dimensions

Finally, unlike in [FSC98], we will need estimates for wy and for the derivatives

" rlog2

2(n; — 1)47T1 (47 — 1) when r € (47771, 3477,

L when r € (1477, 477,
¢/(T) — { (2 )

o) = | 7log? ﬁng when r € (347,477,
2(n; — 1)4%*2  when r € (47171, 1479

Lemma 3.3. Let wy be as in (3.2) and ¢ be as in (3.8). Then,
% (log %)0 when r € [247%47%),
wo(r) S —2(1-) (1o 2~ (10 h g—i—1 1y—i
r (log %) when r € | 5477,
log% when r € (347,477,
2 —i—1 14—
log 2 whenre (4771, 547,
r1 when r € (347%,477),
rlog2 whenr e (47771, 2479).

()] S {

6/ (r)] < {
Proof. Fix i € Ng and r € (347,47%). Since i + 1 < log 2 and 47" < 2r, we get
wy(r) = (i +1)%472%9 < 1% (log %)9 .

Additionally, we obtain

: 47" 4

6(r)| =i+ —L log— <i+1<log-

log 2 r r
and ) .
§() = s € =% -,
rlog2 — rlog2 ~ r

where we used 7; € (0,1) and 1022 log‘%i € [0,1].

Now, fix r € (47771, 247%). Since i + 1 < log 2 and 47" < 4r, we get

wo(r) = (i + 1)—(1—9)4%(1—9) < F—2(1-6) (log%)—(l—e) ‘
Using (; — 1) € (—1,0) and (4°t'r —1)2 > 0, we obtain

B =i+ 14 (e — DA 1) <41 <log .
Now, we must argue for ¢'(r) a bit differently than before. Using the definition of n;
in (3.9), we get

(2log2)~1(i + 1)4% i+

/ — 4i+1 -1 < (5 1472i4i+1< 1 2
|¢ (’r)‘ 2+(210g2)71(2+1)472l ( r )N(Z+ ) NT Ogr,»7

where we needed (471r —1) € [0,1]. O

11



3 Construction of the Counterexample

The following lemmas were also shown in [FSC98], but we will prove them in more
detail.

Lemma 3.4. Let v be as in (3.7). Then, v € H'(wg, B1).

Proof. To show v € H'(wy, By), it is sufficient to approximate it with Lipschitz functions
with respect to the H!(wy, By)-norm, since every Lipschitz function can be approximated
by C°°(Bj) functions. Define for n € N

On(r) == d(1)Lp>a-ny +nlppcy—my and vp(x) = e o (1) .

At this point, it was claimed in [FSC98] that v, — v in H'(wg, B1), which we will now
prove.

Each function v, is Lipschitz-continuous and v, and Vv, converge pointwise to v and
Vv, respectively. Moreover,

v = vnll 71 (wp,B1) = /31 wo(r)(|Vu(x) = Von (@) ? + [v(z) — vn(2)|?) dz
— g2 wg(r)((a2 + 1)|o(r) — n\Q + \¢’(r)]2)1{T<47n}(r) dz

Bl1
S / wo(r)([¢(r)[* + 19/ (r)|?) rdr, (3.10)
0
where we needed
|Vou(x) — Vo, (z)| = |Oho(z) — O1v(x)| + |0rv(z) — Orvp ()]
= a1 g(r) — ¢n(r)] + > () — ¢}, (r)]

Fubini’s theorem, radial coordinates and ¢(r) > n if r < 477,
If (3.10) converges, the claim follows by the dominated convergence theorem. We write

1
/ AN+
Ly—i

—Z/ S + 10O rdr+ [* )60 +1¢/0)R) rdr

3

and use Lemma 3.3 to get

2/4 oot rar 5 [ sy,
4—' 1 0
Orp(r))? rdr < log 2)7r=1+20 qpr |
Z r)[0-¢(r)] < g7
0
%
rdr o) B T,
Z/ sPrars [ og2)
4-
14—'
Z / )3k (r)[? r dr < / 2)140p1420 g

Since 6 > 0, all these integrals converge due to Lemma 2.8. O

12



3.1 Counterexample in three dimensions

Lemma 3.5. Let v be as in (3.7) and ya; := 4%, Y9141 := %4” fori e Ng. Then, v is a
weak subsolution of (3.6) in each cylindrical shell By N {yny <1 < 1} with N € N.

Proof. Fix N € N and define 2 := By N {yny <r < 1}. Furthermore, let ¢ € C°(Q2) be
nonnegative. Additionally, we denote the cylindrical shells with

Moy, := B1 N {%4_2 <r< 4_1} and M1 :=B1 N {4_i_1 <r< %4_1} ,

the left-sided weighted derivative with (wp¢’)(r~) and the right-sided weighted derivative
with (wgg’)(rT). Since wy is constant on each M, we obtain via integration by parts

N
weVv -V = / wepVv -V
/Bl kzz:o Mk
N
:Z—/ ngvgo—i-/ weV - i
=0 M oMy,

N
= Z—/ weAvp
k=0 Mk

N-1

! kz::l /Blﬂ{r=’7k} e ((wegb,)(%;) N (w9¢/)(7;r))90($) dz ,

where 77 denotes the unit surface normal. Since ¢ has compact support in 2, the boundary
integrals on the sets By N {r =1} and By N {r = yn} vanish.
Thus, we have proven what was claimed in [FSC98], i.e. it is sufficient to prove

(i) —Av <0 in My,
(ii) (wod')(7g) — (woe) (%) < 0 for every k.

Proof of (i). Using spherical transformation, we obtain
~ () = et (%(r) + L 9() + () )
hence —Av < 0 in M}, provides
QP6(r) + /() + ¢() 2 0.

For r € (347%,47%), we get

@?60) + 160+ ') = (14 Moo ) e (Y B i
r log 2 r r\ rlog2 r?log2 — -

where the second and the third term cancel each other, and we used 10’22 log 47—1- > 0. This

should be no surprise, since the second and the third term are exactly planar laplacian,

13



3 Construction of the Counterexample

whereas ®(z) = Cy + C; logr, i.e. modulo constants ® is the fundamental solution of
—Awu = 0 in the plane (see [Eval0]).
Now, fix r € (4771, 247%). Then, it follows that

Q*6(r) + 1 9'(r) + 9" (r) (3.11)
PV 1)4%+2( a?(i+1) ?(4lr —1)2 1 ) '

: : “(r—47"Y 41
2(771-—1)42Z+2+ 2. 4242 +r(r )+

Furthermore, we get

a?(i+1) ?(4tr —1)2 1 i
2(n; — 1)42i+2 9. 42i+2 + ;(T —4 ) +1
41 a? ( 1+ 1
=2 — + -
T 2- 42'L+2 i — 1

o (i1 )
4242\ 1 — g -

o? ((i +1)(2+ (2log2)~(i+1)472%)  (2log 2)—14—22')
- 4242 (2log2)~1(i +1)4—2 (2log2)—14-2
a? 2+ (2log2) tid=%

242142 (2log2)~14-%
a?log 2 _ a?i
8 9. 42i+2

+ (4i+17‘ _ 1)2)

IN

[\

N|IW DWW NDwWw N w
[\S)

2
« .
2 ! -

where we used —1 < —2-4%, (4"1r — 1)> <1 and the definitions of 7; and « as in (3.9).
This and (7; — 1) < 0 imply that the term (3.11) is greater than 0. In particular, note
that o was defined so that the first and second summand in the penultimate line cancel
each other.

Proof of (ii). Consider r = 4=*. Then, the right-sided derivative satisfies

¢/((47i)+) — ¢/((47(i71)71)+) — 2(772,_1 _ 1)41(42472 . 1) -0
and the left-sided derivative is

F((4)) =50 <O

Thus, (wod)((47)7) — (wed)((47)*) < 0.

Now, fix r = %4 . Then, the right-sided weighted derivative satisfies
/ lfi+__277ii‘ 0 4—2i0
(wos) (347 ") = gt (1)

14



3.1 Counterexample in three dimensions

and the left-sided weighted derivative is

(weaﬁ/)((%z;—i)—) = o(n; — 1)47+1 (;4 _ 1) (i 4 1)~ (1-0)42i(1-0)

(2log2) (i +1)4% 4+
2+ (2log2)~1(i4+1)4~%
20 o 0 (—2i0
= — P44 1)047%
log 2 (i+1)

= (@) ((347)7).

(Z + 1)—(1—9)42i(1—9)

At this point we see that 7; is defined so that (wgg¢’) ((%4_i)_> = (wp¢) ((%4_i)+>. O

Lemma 3.6. Let v be as in (3.7). Then, v is a weak subsolution of (3.6) in Bj.
Proof. We define the cut off function 1, : R — [0, 1] such that 1, € C([0,1]), 1n(r) = 0

for 0 <r < %4*", Pp(r) = 1 for 4™ < r and ¢/, (r) < 4"*1. Consider a nonnegative
@ € C°(By1). Then, we get

/ VvV = / wpVu - V((1 = 1y)ep) +/ wpVu - V(¢np) .
B B B

Since ¥, ¢ has compact support with its support being a positive distance away from
{z1 = 0}, the second integral is negative according to Lemma 3.5. In the following, we
argue that [ wyVv - V((1 — tn)p) is negligible, i.e. it vanishes as n — 0. This then
completes the proof.

We get

[ wavo V(@ -vae)| < [ ol = nl [V - Vi
By Bin{r<4-"}

+/ wele| Vv - Vib,|, (3.12)
Map,

where My, = B1N{34™" < r < 47"}. According to the dominated convergence theorem,
the first integral in (3.12) converges to 0 as n — 0o, since wy|l — ¥, ||Vv - V| converges
pointwise to 0, and is dominated by wy|Vv - V|, where, using Holder inequality, we get

1
[, wolVo- Vel < Vel [ Vav/aal Vo] < 19 ¢locllnlV* ol .z, < -
1 1

where we define |-, := ||| z»(B,) for p € [1,00].

15



3 Construction of the Counterexample

We denote the radial unit vector with €,.. Then, we get for the second integral in (3.12)

|1l 1V0- Viiulan < lleloe [ wolV0- 4715,
Mz, M2y
q4—mn
Slelle . 4" n(r)|o/rdr
2

4—n
Slello [, (n+1)0470720 ar

1
= Sl + 1)747200

where we used Fubini’s theorem, radial coordinates, the definition of wy in (3.2) and the
estimate |¢/(r)| < 2 from Lemma 3.3. Since 6 > 0, the sequence (n + 1)?472"% converges
to 0 as n — oo. Therefore, the second integral in (3.12) also vanishes. O

Existence of a solution
In the following, we solve the following Dirichlet problem

—V-wQVu:O inBl,

(3.13)
U= on 0B,

where v is the weak subsolution constructed above. This concludes the proof of Theo-
rem 1.3 using Lemma 2.7. As mentioned in chapter 2, the existence of a weak solution
of (3.13) was not proven in [FSC98|. For that, we argue as in the construction for the
subsolution. First, we show that on a positive distance away from the line {z; = 0} a
weak solution of (3.13) exists, i.e. a weak solution ,, exists for

-V -wyVi, =0 in Q,,

i (3.14)
Uy =V on 9%, ,

where Q,, := B1 N {%4*” <r <1} and n € N. Afterwards, we prove that the sequence
(i, )n converges to the desired weak solution of (3.13).

Lemma 3.7. Let v be as in (3.7). Then, a weak solution i, € H'(wg, Q) of (3.14)
exists for each n € N. Additionally, the following estimate holds:

tn = V)| 51 (w,00) < V] H1 (0p,02) - (3.15)

Proof. The main idea is that a positive distance away from the line {z; = 0} the coefficient
field wy is bounded away from 0 and from above. Then, the common theory yields the
existence of a weak solution of (3.14). However, for the estimate (3.15) we must argue a
bit differently.

Note that the H!(wy, Q,)-norm is equivalent to the H'(£2,)-norm, because of

_1 1
g 152 oy a1y < Ml iy < NolZeo il (3.16)

16



3.1 Counterexample in three dimensions

and that H}(wg, Q) C H}(2,) due to Lemma 2.5. Let us define ¢, := ”“)9_1”220(9”) and

Cn = HWGHLOO(Q,L)-
Now, fix n € N, set H := H{(wg, Q) and consider the bilinear form

L:HxH—R
(u,v)r—>/ wpVu - Vu.
Qn

The mapping £ is continuous and, using the equivalence to the H'(£2,)-norm (3.16) and
Poincaré’s inequality in Theorem 2.4, we obtain

L(u,u) = en||Vullizq,) = enCplllulli o, = CoenCpllullfy

where Cp denotes the constant in Poincaré’s inequality. Note that H}(Q) := I/VO1 2(Q) for
some domain € C R™ (see [Sch13] or [Eval0]).
According to the Lax-Milgram theorem (see [Sch13], Theorem 6.8), a unique v, € H
exists such that
L(vn, ) = —L(v,p), Voe H

and
lvnlle < 1£(v,)ar

since —L(v,-) € H'. Then, 4, = v, + v is a weak solution of (3.14) and it satisfies
Up — v € H} (wy, Q). Moreover, we get

[tn = V|| 1 (w,0,) < SUP / weVv -V < sup  |[v g1 (w,,Bllella < vl a1 w,,B) -
wEH , n pEH ,
lell m<1 lloll 7 <1

Lemma 3.8. The Dirichlet problem (3.13) has a weak solution u.

Proof. Using Lemma 3.7, we obtain a sequence (i), of weak solutions of the Dirichlet
problem (3.14) for each n € N. We extend these functions as follows:
Up = v+ (G, —v)1g

n*

Since (i, —v)1lq, is in HE(wg, B1) and v € H'(wp, By) due to Lemma 3.4, u,, belongs to
H'(wg, B1). Using estimate (3.15), we get for every n € N

unll it (we,B1) < 2101 E1 (wy,B:) - (3.17)
Thus, a function v € H'(wy, By) exists such that

Uy — U in Hl(wg,Bl).
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3 Construction of the Counterexample

Now, we have a candidate for a weak solution. Consider a ¢ € C2°(By). Then, the
weak convergence implies

/ weVuy, - Vo —— / weVu - V.
B1 n—oo B1

The claim is proven if we show that [ B, WoVn - Vi also converges to 0.

Like in the proof of Lemma 3.6, we define the cut off function 1, : Rt — [0, 1] such
that 1, € C1(R), tn(r) =0for 0 <r < 247" 4hp(r) =1 for 47" <7 and ¢, (r) < 471
Then, we get

/ weVuy, - Vo =
By

Vo Vip+ [ i V(1= da)g) + /Q oV - V().

/;10{7‘<g4_”} Qo

The first integral converges to 0 as shown in the proof of Lemma 3.6 and the last one
vanishes, because 1, is a weak solution in €2, and ¥, has compact support in €2,,.
Let us observe the second integral which can be decomposed as follows:

[ @V (- o) < [ ol = ¥ [Viin - Vi
Qn Bin{r<4—n}
+/ wol| Vit - Vi (3.18)
M2n

where Mo, = B1 N {%4_” < r < 47"}, According to the dominated convergence theorem,
the first integral in (3.18) converges to 0 as n — 0o, since wy|l — 1y, ||V, - V| converges
pointwise to 0, and is dominated by wy|Vi, - V|, where, using Holder inequality and
estimate (3.17), we obtain

~ 1
[, ol VT <190l [ o3IVl < 2t 5101173,
1 1

For the second integral in (3.18) we get

1
2
[ wnlel IVan - Tal < lolloclnlin [ wolV6aP)
Mo, Moy
4-n 3
<9 42042, )
S 2l ([ o242 dr

4—71

< 2lellollol o (|

—n

1
(n+1)°4n(-20) dr) 2

g —no
= llellsollvllmr wp,51) (0 4 1)247,

where we used Holder’s inequality, estimate (3.17), Fubini’s theorem, radial coordinates,
the definition of wy in (3.2) and r < 2-47" if r € (%4*i,4*i). Since 6 > 0, the sequence

(n + 1)34_"9 converges to 0 as n — oo. Therefore, the second integral in (3.18) also
vanishes. 0
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3.2 Counterexample for four and more dimensions

3.2 Counterexample for four and more dimensions

The proof of Theorem 1.4 is similar to the proof of Theorem 1.3 given in the previous

section and only small differences apply. We will repeat the proof of the most lemmas

for better readability and point out the main differences in the beginning of each proof.
Fix d > 4 and p,q € (1, 00| such that

L 2
p q d—1
Consider 0 € [0, 1] such that
1 2(1-—
P d—1 q  d—1

Throughout the proof we write < if < holds up to a positive constant that depends only
on d, p and ¢q. As already mentioned, we also allow the borderline case in comparison to
the case d = 3.

Construction of the Coefficient Field
As stated in Theorem 1.3, we construct the coefficient field on the unit ball B;. Let us
denote the distance to the x-axis

for the entire section. Obviously, we have r € [0,1]. As we have done before, we define
our coefficient field wyg : By — RT with

+1)04720 hen r € [347%,47
wy(x) = {(2 +1) when r € [347,47), (3.19)

(i41)"0=94%0=0)  when r € 4771, 1477)
where 7 € Ng. As the definition is identical to the previous one, the same estimates hold.

Lemma 3.9. Let wy be as in (3.19). Then, the following inequalities hold in By

1 45, 4 log 4
log— ] < <|—"-= .
<log4r ©8 r) S wl@) < <r2 log§>

Proof. See proof of Lemma 3.1. O

Combining Lemma 3.9 with Lemma 2.8 we get

Lemma 3.10. Let wy be as in (3.19). Then, it satisfies

wg € LP(By),  w,' € Li(By).
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3 Construction of the Counterexample

Proof. In this proof we must additionally discuss several cases which do not occur in

Lemma 3.2, i.e. p,g =00, p= ﬁ and ¢ = %. We define

log 4 1 5, 4
F(r)=|—-——= d = log—) .
(r) (7“2 log 7%) o /) (log 4" 08 r)

Using Lemma 3.9, it suffices to show
FeILP’(B)) and f'eLliB).

First, consider p € (1,00). Using Fubini’s theorem and radial coordinates, we obtain

1 1
/ |F(z)P dx < / da:l/ r=21=9) (1og %)_p(l_(;)rd*2 dr. (3.20)
B 0 0

If the strict inequality p < 2(511:19) holds, we get d—2—2p(1—0) > —1 and (3.20) converges
due to Lemma 2.8. Otherwise, if p = ﬁ, we get d — 2 — 2p(1 — 0) = —1. Because of
d > 4, this case yields
d—1
—p(1—-10)= = < -1 (3.21)
and (3.20) also converges due to Lemma 2.8. Now, consider p = oo. This yields § = 1
and F' = 1. Therefore we have F' € L>(By).
Analogously, we get
1
/ ot de S / r=20 (log 4) 42 dr (3.22)
B 0
Ifg < %, we get d —2 —2¢f > —1 and the integral converges by Lemma 2.8. Otherwise,
if g = %, we have d — 2 — 2qf = —1. Because of d > 4, this case yields
d—1
—qf = 5 < -1 (3.23)

and (3.22) also converges due to Lemma 2.8. Now, consider ¢ = co. This yields # = 0
and f~! = 1. Therefore we have f~! € L>(B). O

Here we see why the borderline case applies in comparison to the spatial dimension
d = 3. We benefit from the fact that the powers of the logarithm terms in (3.20) and
in (3.22) are strictly less than —1. That is why we are able to use Lemma 2.8. In
comparison, for d = 3 the powers of the logarithm terms equal —1 which can be easily
seen with (3.21) and (3.23). Thus, we cannot use Lemma 2.8 for this case.

Construction of the Subsolution
Now, we construct an unbounded weak subsolution of

V- (wgVu) =0. (3.24)

20



3.2 Counterexample for four and more dimensions

We define ¢ : (0,1) — R and v : By — R such that
v(x) == e (1), (3.25)
where

o {z + 1iBa(471@=3)p=(d=3) _ 1) when r € [%4_1,4_") ,
"= i —im1 1g—i
i+1+ (g — 14" —1)?  when r € [47771, 2477,

Bui= (2 —1)7",  agi= /207 1B4d(d - 3), (3.26)

2

Ty od a8, (d—3)(i + )42

For d = 4 we have 54 = 1, a4:4\@andmzm
definition of v in [FSC98], except that ay there equals 8. As before, 7; and ay are essential
for proving that v is a subsolution on a cylindrical shell. As we will see, our choice of oy
is optimal, i.e for every a/; > ag the function v(x) = e®a®! ¢(r) is a subsolution of (3.24).
Therefore, it is possible to choose ay = 8 as it was done in [FSC98]. Furthermore, we
introduce By to guarantee that ¢, and therefore v, is continuous.

We continue as in section 3.1 by proving estimates for wy and for the derivatives

(3.27)

which corresponds to the

&'(r) {_(d — 3)niBqd =3 p=d+2 when r € (%4’1', 474,
r)= . . ) ]
2(n; — )4+ (4 — 1) when r € (4_2_1, %4—1) ,

¢"(r) = (d—3)(d— 2)ni Bad 43 =1 when r € (%4”', 474,
2(n; — 1)4%+2 when r € (47771, 2477) .

Lemma 3.11. Let wy be as in (3.2) and ¢ be as in (3.8). Then,
< % (log %)9 when 7 € [347%,477)
wa(r) < —2(1-6) 2\ —(1-0) —i—1 14—
r (log 2) when 7 € [47"71,5477),
log4 when r € (3474477,
log2 when r € (4771, 1477

6(r)] S {

r—1 when r € (347,477,
rlog2  when r e (47771, 2477).

EACGIPS {

Proof. We proceed as in the proof of Lemma 3.11, but note that n; and ¢ are defined
differently. Fix ¢ € Ng and r € (%44,4*1). Since 1 4+ 1 < log% and 47% < 2r, we get

we(r) = (i 4 1)%472 < 2% (log %)6 .
Additionally, we obtain

; 4
($(r)] = i+ mfa(47 7D 1) <+ 1 < log
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3 Construction of the Counterexample

and .
¢/ (r)] = (d — 3)m;Bqd~ 43— 0F2 < -

where we used 7; € (0,1), Bg(4~14=3)r=(d=3) _ 1) € [0,1].
Now, fix r € (4771, 247%). Since i + 1 < log 2 and 4% < 4r, we get

we(r) = (i + 1)—(1—9)421‘(1—0) < F—2(1-0) (log g)—(1—9) .

r

Using (n; — 1) € (—1,0) and (471 — 1)2 > 0, we obtain
; 2
lp(r)| =i+14+(m—-1)E r—1?<i+1<log-.
T

Now, we must argue for ¢'(r) a bit differently than before. Using the definition of n;
in (3.27), we get

297484(d = 3) (i + 1)4™*
24248,(d — 3) (i + 1)4~%

|6/ (r)] =

A4y — 1) S (i + )47 24 S rlog 2,

where we needed (471 — 1) € [0, 1]. O
As in section 3.1, we divide the proof that v is a subsolution of (3.24) into three steps.
Lemma 3.12. Let v be as in (3.25). Then, v € H'(wg, B1).

Proof. This proof is almost identical to the one from Lemma 3.4. The only difference is
that some integrals are slightly different due to the spherical transformation. To show
v € H'(wyg, By), it is sufficient to approximate it with Lipschitz functions with respect to
the H'(wy, B1)-norm, since every Lipschitz function can be approximated by C°°(B;)
functions. Define for n € N

On(r) == d(1)Lp>a-ny +nlppcy—ny and vp(x) = e (1) .

Each function v, is Lipschitz-continuous and v,, and Vv, converge pointwise to v and
Vo, respectively. Moreover,

[0 = vnll 1 w,B1) = /B wo(r)(|Vo(@) = Vo (2)]* + [v(z) — vn(2)]*) dz

1

_ eZax1 wg(r)((oﬂ + 1)|¢(’r) — n\Q + |d),(’l”)|2> 1{r<4_”}(r) dx

1
< /0 wo(r)(J6(r)]? + ¢/ (1)) 2 dr (3.28)
where we needed

|Vo(z) — Vo (x)| = |01v(x) — O1v(z)| + |0rv(x) — Orvn ()|
= ae® (1) — ¢n(r)] + ¥/ (r) — ¢l (r)],
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3.2 Counterexample for four and more dimensions

Fubini’s theorem, radial coordinates and ¢(r) > n if r < 47"
If (3.28) converges, the claim follows by the dominated convergence theorem. We write

1 4
| oo +16/ 02 m-g/ B +1¢/ (1)) 142 dr

+/ B+ 16/ (1)) r 2 dr

and use Lemma 3.11 to get

4 i
Z/ ()2 d2d1"</(10g )2+9d2+20d7’
0
4 . ;
Z/ r)|0pp(r)|? rd—2 drg/ (log %) rd=4+20 4y
0
1
Z/E ) !2 =2 qr < / 1+9 = 4+29dr
4 i—

14 (3
Z/ )0, (r )|2rd_2dr§/ (log 2 )1+9 d=2+20 3.
4-

All these integrals converge due to Lemma 2.8. O

Lemma 3.13. Let v be as in (3.25) and y2; := 4%, Yoiq1 := %4*" for i € Ng. Then, v
is a weak subsolution of (3.24) in each cylindrical shell By N {yny <r < 1} with N € N.

Proof. We proceed as in the proof of Lemma 3.5. Fix N € N and denote 2 := By N{yn <
r < 1}. Furthermore, let ¢ € C°(2) be nonnegative. Additionally, we define the
cylindrical shells with

My; ;= B1 N {%47i <r< 471.} and Masi1q :=B1 N {472’71 <r< %471'} ,

the left-sided weighted derivative with (wg¢')(r~) and the right-sided weighted derivative
with (wgg’)(r™). Since wy is constant on each My, we obtain via integration by parts

N
Vo-Ve=3 [ wvu-v
/Blwg vV ZMwe V-V
:Z / ngvgo+/ wpVu - fip
N
Z / weAvp

N-1

t /Blm{rvk} o™ ((wpd) () — (wod) (1)) (@)

k=1
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3 Construction of the Counterexample

where 77 denotes the unit surface normal. Since ¢ is compactly supported in €2, the
boundary integrals on the sets By N {r = 1} and By N {r = yx} vanish. Thus, it is
sufficient to prove

(i) —Av <0 in My,
(i) (wed')(vy ) — (w9¢’)(7,j) < 0 for every k.

Proof of (i). Using spherical transformation, we obtain

~Bu(z) = — et (aZplr) + 2 ) + ()

hence —Awv < 0 in M}, provides

036(r) + 20 + 0 2 0.

For r € (347%,47%), we get

aiqb(r) + ?qf)'(r) +¢"(r) = aﬁ(i + mﬁd(4—i(d—3)r—(d—3) ~1)

+ 22 (4= 3y paa -9y (a-2)

+ (d — 3)(d — 2)m;Bqa" @3 p=(d=1)
>a2i >0,

where the second and third term cancel each other, and we used 17; 3q(4=*4=3)r—(d=3)_1) >
0.
Now, fix r € (4771, 347%). Then, it follows that

d—2
azo(r) + TW(T) +¢"(r) (3.29)
; 2(i4+1 2411 —1)2 d—2 .
_%m—lmﬁﬂ(%:%:L;Q aA24;w) + w—4ﬂ*y+0.
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3.2 Counterexample for four and more dimensions

Furthermore, we get

aZ(i+1) 24ty —1)2  d-2

. : —47"h 41
2(m; — 1)42i+2 Ty e T, (r )+

47 1(d - 2) ag i+1 i+1 2
—d-1- 2-42"+2<m—1+(4 r1))

1 % i+1
<d—1--(d-2)- —2& -1
- 2( ) 2-42Z+2(1—n,- )
o d A ((i +1D)2+29784(d = 3) (i + 1)47%)  2978,(d — 3)4—%)
2 24242 20-43,(d — 3)(i + 1)4~2 20-43,(d — 3)4~2
_d o of 24296,(d - 3)ia*
9 9 . 42i+2 2d_4ﬁd(d _ 3)4—2i
- g _ ag _ afli

2 20By(d —3) 2422

2
Qg. o9
= Yyicrcg,

where we used —1 < —2.4%, (4"71y —1)? <1 and the definitions of 7; in (3.25) and aqg
in (3.26). This and (1; —1) < 0 imply that the term (3.29) is greater than 0. In particular,
note that oy was defined so that the first and second summand in the penultimate line
cancel each other. A greater value for oy yields that (3.29) is even smaller.

Proof of (ii). Consider r = 47*. Then, the right-sided derivative satisfies

¢/((47i)+) _ ¢/(<47(i71)71)+) _ 2(”@'—1 - 1)42‘(41471' . 1) =0
and the left-sided derivative
¢ ((47)7) = —(d — 3)m;Bgd 34102 < 0.

Thus, (we¢)((47)7) — (wed') ((47)F) < 0.
Now, fix r = %4_1. Then, the right-sided weighted derivative is

(wod') ((%4_i)+) = —(d — 3)n; g~ "473)247241d=2) (j 4 1)04 210
= —(d — 3)miBa2" 24" (i + 1)P47%
and the left-sided weighted derivative
i\ — i 1 . —(1— i(1—
(o) ((347) ) =20 = a7+ (54 1) 6+ 70004200

2071 Bg(d = 3) (i + DA i
2+ 24-18,(d — 3) (i 4+ 1)4~%
_ —(d _ 3)ni5d2d—24i(i + 1)04—2i9
= (W) ((347)7)

At this point we see that 7; is defined so that (U.)@(]S,)((%Zl_i)_) = (w9¢’)<(%4_i)+>. O
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3 Construction of the Counterexample

Lemma 3.14. Let v be as in (3.25). Then, v is a weak subsolution of (3.24) in B.

Proof. The only difference between the proof of Lemma 3.6 and this one is that some
integrals are slightly different due to the spherical transformation. We define the cut
off function ¢, : R™ — [0,1] such that ¢, € C*([0,1]), ¢n(r) =0 for 0 < r < 2477,
Pp(r) = 1 for 47" < r and ¥}, (r) < 4”1, Consider a nonnegative ¢ € C2°(Bj). Then,
we get

/ Vv Ve = / weVu - V(1 —pn)p)+ | weVv-V(¢pp).
B B B

Since ¥, ¢ has compact support with its support being a positive distance away from
{z1 = 0}, the second integral is negative according to Lemma 3.13. In the following, we
argue that [ wpVv - V((1 — 1)) is negligible, i.e. it vanishes as n — 0. This then
completes the proof.

We get

[ wnve- v -vae)| < [ wall = ul [V0- Vo
By Bin{r<4-"}

+ [ wlel Vo Ty, (3.30)
MQn

where My, = B1 N {%4*” <r< 4*”}. According to the dominated convergence theorem,
the first integral in (3.30) converges to 0 as n — 00, since wy|l — ¥,||Vv - V| converges
pointwise to 0, and is dominated by wg|Vv - V|, where, using Holder inequality, we get

1
[, wolVo- Vel < Vel [ aav/@al Vo] < 196l {0l 5:) < -
1 1

Then, we get for the second integral in (3.30)

[ 161190 Tk < il [ wol Vo471,
2n 2n

Slelle |, 4" ()62 ar
2
4*77,

< ||90HOO/14_n(n+ 1)04n(4—d—29) dr
2

1
= 5llelloo(n + 1)74mE==20),

where we used Fubini’s theorem, radial coordinates, the definition of wy in (3.19), the
estimate |¢/(r)| < 1 from Lemma 3.11 and r < 2-47". The sequence (n + 1)04n(3-d=20)
converges to 0 as n — oo. Therefore, the second integral in (3.30) also vanishes. O

Existence of a solution
In the following, we solve the following Dirichlet problem

—V-wyVu =0 in By,

U =0 on 0By,
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3.2 Counterexample for four and more dimensions

where v is the weak subsolution constructed above. This concludes the proof of Theo-
rem 1.3 using Lemma 2.7. For that, we argue as in the construction for the subsolution.
First, we show that on a positive distance away from the line {z; = 0} a weak solution
of (3.13) exists, i.e. a weak solution @, exists for

-V - wyVi, =0 in Q,,

Uy =V on 9, ,

(3.31)

where 0, := B1 N {%4_” <r <1} and n € N. Afterwards, we prove that the sequence
(iy, ), converges to the desired weak solution of (3.13).

Lemma 3.15. Let v be as in (3.25). Then, a weak solution i, € H'(wg, ) of (3.31)
exists for each n € N. Additionally, the following estimate holds:

T — vl 1 (we.0) < VI 21 (w,02) - (3.32)
Proof. See proof of Lemma 3.7. O
Lemma 3.16. The Dirichlet problem (3.13) has a weak solution u.

Proof. As before, the only difference between the proof of Lemma 3.8 and this one is
that some integrals are slightly different due to the spherical transformation. Using
Lemma 3.15, we obtain a sequence (i, ), of weak solutions of the Dirichlet problem (3.31)
for each n € N. We extend these functions as follows:

Up =0+ (4n, — v)1q, .

n

Since (@i, — v)1q, is in Hg(wg, B1) and v € H'(wg, B1) due to Lemma 3.12, u,, belongs
to H'(wp, B1). Using estimate (3.32), we get for every n € N

lunll it (wg,Br) < 2101 E1 (wy,B1) - (3.33)
Thus, a function u € H'(wy, B1) exists such that
Uy — U in H'(wg, By) .

Now, we have a candidate for a weak solution. Consider a ¢ € C2°(Bj). Then, the
weak convergence implies

/Bl(JJgVun-Vw —= /BlcugVu-Vgo.
The claim is proven if we show that [5 wsVu, - Vi also converges to 0.
We define the cut off function v, : R — [0,1] such that 1, € C*(R), 1,(r) = 0 for
0<r <347 p(r) =1 for 47 < r and ¢, (r) < 4", Then, we get

/ weVu, - Vo =
By

wpVu - Vo + /Q woViin - V((1 —n)p) + /Q woViy - V(Pnp) .

/Blﬂ{r<§4_"}
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3 Construction of the Counterexample

The first integral converges to 0 as shown in the proof of Lemma 3.14 and the last one
vanishes, because 1, is a weak solution in €2, and ¥, has compact support in €2,,.
Let us observe the second integral which can be decomposed as follows:

[ @iV (=) < [ woll = | [Vt - Ve
Qn Blﬂ{r<4_”}
[ wolgl Vi - V. (3.34)
M2n

where Mo, = B1 N {%4*” < r < 47"}, According to the dominated convergence theorem,
the first integral in (3.34) converges to 0 as n — 0o, since wy|l — ¥y ||V, - V| converges
pointwise to 0, and is dominated by wy|Vi, - V|, where, using Holder inequality and
estimate (3.33), we get

~ 1
[, ol VT <190l [ VoG] < 2ol 510173 5
1 1

For the second integral in (3.34) we obtain

1
2
| wrlel Vi - Vi < MlooHun\Hl(wg,Bn( / wervwnP)
Mo, M-

i ;
2
S 2ploclvlisonm [, ot 2ar)

g4

S 2l f,

4—7’L

1
(n+ 1)94”(4*&29) dr) ’

—n

1
= ”(’DHOOHUHHl(we,Bl)((TL + 1)94n(3—d—29))2 ’

where we used Holder’s inequality, estimate (3.33), Fubini’s theorem, radial coordinates,
the definition of wy in (3.19) and r < 2-47", if r € (347%,477). Since the sequence
(n41)?47(3=4=29) converges to 0 as n — oo, the second integral in (3.34) also vanishes. [
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