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1 Introduction

How can we use machine learning and neural networks (NNs) in synergy with ocean,
climate, and atmospheric science models? Simulating these models requires solving
partial di�erential equations spanning a wide range of time and length scales in
computational �uid dynamics. However, limited computational power may prevent
climate models from fully resolving these processes before the e�ects of climate
change occur [Sch17]. To overcome these limitations, parameterizations, known as
closure models, represent subgrid-scale processes. Nevertheless, parameterizations
introduce signi�cant uncertainties and biases [Wil07, Bec08, Far11, Ste13, Gri15].

One promising approach is to use machine learning algorithms (ML) to develop
new parameterization schemes by �tting them to the results of relatively expensive
physical models that more accurately represent the subgrid dynamics. ML models
can learn complex mappings by minimizing errors between their predictions and
known outputs over many training examples.

In climate modeling, NNs are one of the most popular areas of machine learning. In
particular, they have been applied to solve forced Burger's equation [Alc21a, Sub21],
and used for ocean modelling [Bol19, Zan20, Gui21], to represent clouds [Ras18],
residual heating and moistening [Bre19], convection [Kra13, Yuv21]. NNs have
some computational advantages over other ML algorithms, such as the possibility of
greater accuracy due to their universal approximation properties [Cyb89, Hor89] and
needing substantially less memory when implemented. Furthermore, very e�cient
parameterizations can be obtained by implementing NNs at reduced precision in
graphics processing units (GPUs), tensor processing units (TPUs), and even in
central processing units (CPUs) [Van11].

However, neural networks can su�er from certain limitations, including instabilities,
lack of interpretability, and poor generalization to unseen conditions during train-
ing [O'G18, Ras18, Bol19, Bre19]. One possible reason for these issues is that NN-
based models do not inherently conserve energy and mass, which can impact their
performance in speci�c applications. To address this concern, Beucler et al. [Beu19]
suggested that by either constraining the loss function or modifying the architec-
ture of the network, NNs can be enforced to satisfy physical properties. Another
approach for preserving conservation laws was introduced by Alcala and Timofeyev
in [Alc21a]. Using a �nite di�erence method for spatial discretization, they could
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1 Introduction

parametrize subgrid e�ects by local subgrid �uxes, which they added to the resolved
�uxes. This approach ensures mass conservation and improves the model's ability
to represent subgrid-scale processes.

This thesis focuses on the application of the approach proposed in [Alc21a] to the
shallow water equations (SWE), which are extensively used in environmental mod-
eling and the prediction of natural disasters, including tsunamis, storm surges,
dam breaks, and more. Our primary objectives are to ensure the positivity of
the height state and maintain numerical admissibility while solving the SWE. To
accomplish this, we implement the monolithic convex limiting strategy introduced
by Kuzmin [Kuz20].

We begin, in Chapter 2, by introducing the SWE. Unlike [Alc21a], we use the
�nite volume method for spatial discretization and feedforward neural networks.
In Chapter 3, after brie�y introducing the �nite volume method, we present the
local Lax-Friedrichs (LLF) scheme, which will serve as our base scheme. We also
discuss the time discretization used and the properties of the LLF in this context.
In Chapter 4, we present the subgrid parameterization proposed by [Alc21a] and
feedforward neural networks. We will refer to the resulting scheme as a reduced

model. The monolithic convex limiting strategy for SWE is discussed in Chapter 5.
In Chapters 6 and 7, we perform numerical studies and draw preliminary conclusions
based on the �ndings of this research.
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2 Shallow water equations

Let us consider a �uid �owing through a one-dimensional pipe of the length L
with some velocity v(x, t), which depends on the position in the pipe x ∈ [0, L]
and time t > 0. We assume that the �uid is incompressible, i.e., its density is
constant. Instead, we allow the �uid to vary its depth or height h(x, t). The �ow
of this �uid can be described with the shallow water equations (SWE), which were
�rst introduced by Saint-Venant in [SV71]. That is why they are sometimes called
Saint-Venant equations. As the name of these equations suggests, the pipe length
L must be signi�cantly large relative to the depth h. Furthermore, let g be the
gravitational acceleration. Using subscripts to denote partial derivatives, we are
ready to present the shallow water equations[

h
hv

]
t

+

[
hv

hv2 + 1
2gh

2

]
x

= 0.

See [LeV02, Ch. 13] for a derivation of these equations. We also refer to [Vre94,
Ch. 2] for a more general system of equations with non-constant bathymetry and
its derivation.

To solve this problem, we also require boundary conditions and initial data. For
simplicity, we assume periodic boundary conditions at the boundaries of the pipe.
We can interpret this as the pipe having a shape of a torus. The initial data at
x ∈ [0, L] is given by

h(x, 0) = h0(x), v(x, 0) = v0(x).

For further discussion, it is also useful to note that the problem can also be de�ned
as a hyperbolic conservation law

ut + (f(u))x = 0, (2.1)

where u denotes the unknown and f is referred to as the �ux function. For that,
we assume the height h is strictly positive, i.e., no dry states are present. Then, we
obtain by introducing q = hv:[

h
q

]
t

+

[
q

q2/h+ 1
2gh

2

]
x

= 0. (2.2)
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2 Shallow water equations

The quantity q is often called the discharge in the shallow water theory since it
measures the �ow rate of water. The equation (2.2) has the form of (2.1) with

u =

[
h
q

]
, f(u) =

[
q

q2/h+ 1
2gh

2

]
and the initial data is given by

u(·, 0) =
[
h0
q0

]
in [0, L],

where q0 = h0v0.
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3 Local Lax-Friedrichs method

We now turn to the design of a reliable method for solving the SWE we introduced
in the previous chapter. Section 3.1 begins by considering general conservation
laws and presenting the �nite volume discretization. Then we formulate a concrete
numerical scheme for solving our problem. Section 3.2 uses the local Lax-Friedrichs
method to formulate a spatial semi-discrete scheme. Afterward, we transform it in
Section 3.3 into a fully discrete scheme using explicit Runge-Kutta methods. This
scheme will form the base for the reduced model in Chapter 4 and the monolithic
convex limiting strategy in Chapter 5. Finally, in Section 3.4, we show that our
fully discrete scheme preserves the positivity of the height.

3.1 Finite volume discretization

Let us start with a conservation law of the form

ut(x, t) + (f(u(x, t)))x = 0, (x, t) ∈ [0, L]× (0, T ), (3.1)

where T > 0 is the target time we aim to reach. We assume periodic boundary
conditions in 0 and L for simplicity. The initial condition is given by

u(x, 0) = u0, x ∈ [0, L].

Integrating (3.1) between two points x1, x2 ∈ [0, L] leads to∫ x2

x1

utdx = −
∫ x2

x1

f(u)xdx = f(u(x1, t))− f(u(x2, t)).

If it is allowed to take the derivative outside the integral, we obtain

d

dt

∫ x2

x1

u(x, t)dx = f(u(x1, t))− f(u(x2, t)). (3.2)

The rate of change of u between x1 and x2 is determined by the di�erence in f(u)
evaluated at these points. Thus, the quantity u is conserved and can only �ow out
at the edges. This behavior is why we refer to f(u) as the �ux function.
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3 Local Lax-Friedrichs method

Next, we discretize the spatial domain [0, L] into uniform computational cells

Ci =
[
xi−1/2, xi+1/2

]
,

with the cell width ∆x = xi+1/2 − xi−1/2 and i = 1, . . . , N . Furthermore, the cell

average

ui(t) =
1

∆x

∫ xi+1/2

xi−1/2

u(x, t)dx (3.3)

approximates the average value over the cell Ci at time t. Using (3.2) and approxi-
mating the �ux function f(u(xi+1/2)) by a suitably chosen numerical �ux Fi+1/2, we
obtain a system of ordinary di�erential equations

d

dt
ui =

Fi−1/2 − Fi+1/2

∆x
, i = 1, . . . , N. (3.4)

We refer to this system of equations as spatial semi-discretization.

Since hyperbolic information propagates with �nite speed, it is reasonable to assume
that Fi+1/2 depends on the cell averages ui and ui+1. In other words, there exists a
function denoted as F , such that

Fi+1/2 = F(ui, ui+1),

where F is referred to as a numerical �ux function.

Many standard �nite-volume methods employ a two-point stencil for the numerical
�ux Fi+1/2, such as the local Lax-Friedrichs one in the following section. Using larger
stencils may also be reasonable, which we will discuss in Section 4.1.

3.2 Local Lax-Friedrichs Flux

There are many ways to choose the numerical �ux Fi+1/2 (see for instance [LeV02]).
A popular choice for the numerical �ux we will use in this thesis is the one associated
with the local Lax-Friedrichs (LLF) method. This method is dissipative but stable
and preserves the height positivity, as seen in Section 3.4. Therefore, it is ideally
suited as a base space discretization.

To obtain the LLF (Local Lax-Friedrichs) �ux, we treat each inter-cell boundary as
a Riemann problem. Assuming that the solution has the form depicted in Fig. 3.1,
which consists of two traveling discontinuities, we can use the Rankine-Hugoniot
condition. Applying this condition, we obtain the LLF given by

Fi+1/2 =
f(ui) + f(ui+1)

2
−

λi+1/2

2
(ui+1 − ui),

6



3.2 Local Lax-Friedrichs Flux

−λi+1/2

ui

λi+1/2

ui+1

xi+1/2

ūi+1/2t

Figure 3.1: Structure of the local Lax-Friedrichs approximate Riemann solution
at the edge xi+1/2. The solution consists of two waves propagating at the speeds
−λi+1/2 and λi+1/2. The left and the right states are the cell averages ui and ui+1.
In between, we have a single new state ūi+1/2.

where λi+1/2 represents the wave speed of the traveling discontinuities. In addition,
the intermediate state is

ūi+1/2 :=
ui+1 + ui

2
− 1

2λi+1/2
(f(ui+1)− f(ui)). (3.5)

In the following, we refer to the intermediate state ūi+1/2 as a bar state.

Let us discuss the choice of the wave speed λi+1/2. It estimates the largest possible
wave speed of the associated Riemann problem. For systems like the SWE, we use
the eigenvalues of the Jacobian of the �ux function

f ′(h, v) =

[
v h

v2 + gh 2hv

]
,

which are given by
λ− = v −

√
gh, λ+ = v +

√
gh.

We employ the maximum eigenvalue of the Jacobian matrices f ′(ui) and f ′(ui+1)
as an upper bound estimate [LeV02] of the wave speed, i.e.,

λi+1/2 := max
{
|vi|+

√
ghi, |vi+1|+

√
ghi+1

}
. (3.6)

Finally, using the LLF �ux 3.2 and the de�nition of the bar states (3.5), we write
spatial semi-discretization (3.4) of the LLF scheme as

d

dt
ui =

1

∆x

[
λi−1/2(ūi−1/2 − ui) + λi+1/2(ūi+1/2 − ui)

]
, (3.7)

for i = 1, . . . , N . This equation is also known as the �uctuation form of the �nite
volume scheme [LeV02].
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3 Local Lax-Friedrichs method

3.3 Time discretization

Next, we transform the spatial semi-discretization (3.7) into a full discretization.
For this purpose, we need a numerical scheme to solve the initial value problem

u′(t) = z(u(t)) t ∈ (0, T ),

u(0) = u0,

where u(t) = (u1(t), . . . , uN (t)) is the vector of cell averages, z the right-hand side
and u0 the initial condition. We wish to replace the function u(t) by a sequence
of approximations u0 = u0, u

1 ≈ u(t1), . . . , u
n ≈ u(tn) at discrete time instances

0 = t0 < t1 < · · · < tn = T .

A popular choice is to use the explicit forward Euler method

uk+1 = uk +∆tz(uk), (3.9)

where ∆t = ∆t(k) denotes the time step between tk+1 and tk. Using the for-
ward Euler method, the spatial semi-discretization (3.7) transforms into the full
discretization

uk+1
i = uki +

∆t

∆x

[
λi−1/2(ū

k
i−1/2 − uki ) + λi+1/2(ū

k
i+1/2 − uki )

]
, (3.10)

where i = 1, . . . , N and k = 0, . . . , n.

In our numerical examples (Chapter 6), we employ a di�erent method known as
Heun's method, which can be expressed as follows:

u(1) = uk +∆tz(uk), (3.11a)

uk+1 =
1

2
uk +

1

2

(
u(1) +∆tz(u(1))

)
, (3.11b)

Heun's method is also known as the modi�ed Euler's method or the explicit trapezoid
rule. This scheme can be understood as a two-step Runge-Kutta method, which
consists of two forward Euler steps. It is often preferred over the standard forward
Euler method as it provides better accuracy and stability for speci�c problems.

Other procedures are also conceivable. An exciting class of methods for our purposes
are the strong stability preserving (SSP) methods [Shu88, Got01, Got11], to which
both the forward Euler and Heun's method belong. They can be represented as
convex combinations of Euler steps, among other things. We will see how the LLF
method and monolithic convex limiting strategy exploit this fact in the following
section and Chapter 5, respectively. Nevertheless, choosing a suitable time step is
crucial, which we will also discuss in the following section.
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3.4 Height positivity preservation

3.4 Height positivity preservation

One reason we select the LLF method is not only the method's stability but also
that it preserves height positivity. However, time discretization must ful�ll certain
conditions that we investigate in this section. This will be an essential basis for the
monolithic convex limiting in Chapter 5.

De�nition 3.1 (Height positivity preserving). Consider a state (h1, q1, . . . , hN , qN )
where the height cell averages are strictly positive, i.e., hi > 0 for all i = 1, . . . , N .
We call a fully discrete scheme height positivity preserving (HPP) if the height cell
averages of the time updated state (ĥ1, q̂1, . . . , ĥN , q̂N ) are also strictly positive, i.e.,
ĥi > 0 for all i = 1, . . . , N .

First, we demonstrate the HPP property of the LLF scheme (3.7) discretized in
time with the forward Euler method (3.9). We have already captured the resulting
algorithm in (3.10). The following theorem is adapted from [Gue16].

Theorem 3.2. Assume that the condition

∆t ≤ 1

λi−1/2 + λi+1/2
∆x (3.12)

is satis�ed. Then the full discretization (3.10) is HPP.

The central concept revolves around reformulating the scheme (3.10) into the fol-
lowing form [Gue16, Kuz20]:

ûi = ui +
∆t

∆x

[
λi−1/2(ūi−1/2 − ui) + λi+1/2(ūi+1/2 − ui)

]
,

=
(
1− ∆t

∆x
(λi−1/2 + λi+1/2)

)
ui +

∆t

∆x
(λi−1/2ūi−1/2 + λi+1/2ūi+1/2).

Here, ûi represents the updated solution, and ∆t denotes the current time step.
By observing that the Courant-Friedrichs-Lewy (CFL)-like condition (3.12) is met,
then the update ûi corresponds to a convex combination of the initial state ui and
the bar states ūi−1/2 and ūi+1/2, where the bar states are de�ned in (3.5). Therefore,
verifying the positivity of the height components of the bar states ūi−1/2 and ūi+1/2

is su�cient to prove the HPP property of the scheme.

Lemma 3.3. Let hi > 0 for all i = 1, . . . , N , then h̄i+1/2 > 0 for all i = 1, . . . , N .

9



3 Local Lax-Friedrichs method

Proof. Let i = 1, . . . , N . According to (3.5), the height bar state is de�ned via

h̄i+1/2 :=
hi+1 + hi

2
− 1

2λi+1/2
(vi+1hi+1 − vihi). (3.14)

We reformulate (3.14) into

h̄i+1/2 =
1

2

(
1− vi+1

λi+1/2

)
hi+1 +

1

2

(
1 +

vi
λi+1/2

)
hi. (3.15)

Using the de�nition of the wave speed (3.6)

λi+1/2 := max
{
|vi|+

√
ghi, |vi+1|+

√
ghi+1

}
and hi, hi+1 > 0, we obtain

|vi|
λi+1/2

≤ |vi|
|vi|+

√
ghi

< 1,
|vi+1|
λi+1/2

≤ |vi+1|
|vi+1|+

√
ghi+1

< 1.

Combining this with (3.15) completes the proof.

The HPP property of the LLF method, discretized in time with Heun's method, can
be deduced from Theorem 3.2. To accomplish this, we recognize that each stage is
a convex combination of a forward Euler update and the initial stage. As a result,
the following corollary can readily be extended to SSP methods.

Corollary 3.4. Assume that the condition

∆t ≤ 1

λi−1/2 + λi+1/2
∆x

is satis�ed. Then the LLF method (3.7) discretized in time with Heun's method (3.11)
is HPP.

Proof. Let hj > 0 for every j = 1, . . . , N and �x i = 1, . . . , N . Using the HPP
property of the LLF method, which is discretized in time with the forward Euler

method (3.10), we can deduce h
(1)
i > 0, where h(1) denotes the �rst stage of Heun's

method (3.11a). Another use of the HPP property of (3.10) yields

h
(1)
i +∆tz(h(1))i > 0.

Since we assumed hi > 0, we conclude that the time update ĥi de�ned by (3.11b)
is also positive.

10



4 Model reduction using Neural Networks

Achieving accurate resolution of SWE using the LLF method requires a �ne mesh,
which can be computationally expensive. To address this issue, we present a subgrid
parameterization proposed by Alcala and Timofeyev [Alc21a] in Section 4.1. This
approach modi�es an LLF method on a coarse mesh to reproduce the behavior of the
LLF method on the �ne mesh by introducing a subgrid �ux. However, computing
the subgrid �ux still requires the solution on the �ne mesh.

To overcome the need for a �ne mesh solution in computing the subgrid �ux, we em-
ploy a feedforward neural network (FNN). This FNN approximates the subgrid �ux
using the available coarse mesh data. Our approach diverges from that of [Alc21a],
which employs on generative adversarial networks (GAN) [Goo14] or Wasserstein
GAN (WGAN) [Arj17, Gul17]. We present the construction and training of FNNs
in Section 4.2. Our presentation is largely based on [Nie15, Goo16, Qua22].

4.1 Subgrid �ux parameterization

We begin by considering a �ne uniform mesh of some interval I = [a, b], consisting
of cells

Ci = [xi−1/2, xi+1/2], i = 1, . . . , N,

where each cell Ci has a cell length of ∆x. Additionally, F represents a numerical
�ux function used in a �nite volume scheme, and ui corresponds to the cell averages
of cell Ci. Referring to (3.4), the subgrid semi-discrete scheme can be de�ned by

d

dt
ui =

Fi−1/2 − Fi+1/2

∆x
, i = 1, . . . , N. (4.1)

Here, Fi+1/2 = F(ui, ui+1) represents the numerical �ux between the cell averages ui
and ui+1. In the following, we will refer to the cell average ui as a subgrid mode.

This thesis primarily focuses on the LLF method as the chosen �nite volume scheme.
However, it is worth noting that alternative �nite volume schemes can be employed.
Additionally, the approach can also be extended to incorporate �nite di�erence
schemes. In such cases, the variable ui no longer represents the cell average (3.3) of

11



4 Model reduction using Neural Networks

cell Ci. Instead, it denotes the numerical approximation of the unknown variable
u(x, t) at the cell center.

To obtain a scheme on larger length scales, we reduce the number of cells by merging
them. Let k > 0 represent the coarsening degree, and assume that N is a multiple
of k. Then, the coarse mesh consists of

C̄i :=

ki⋃
j=k(i−1)+1

Cj = [xk(i−1)+1/2, xki+1/2], i = 1, . . . , N/k,

and the cell length of the coarse mesh is given by ∆X := k∆x. Fig. 4.1 illustrates
an example of such a coarsening process with k = 3. In the subsequent discussion,
the index i always refers to the range {1, . . . , N/k} without explicit mention.

C1 C2 C3 C4 C5 C6 CN−2CN−1 CN

C̄1 C̄2 C̄N/3
· · ·

Figure 4.1: A �ne mesh, which includes cells C1, . . . , CN , undergoes a coarsening
process with a coarsening degree k = 3. This results in a coarse mesh consisting
of C̄1, . . . , C̄N .

By employing the chosen �nite volume method, we obtain the following semi-
discretization for the coarse mesh:

d

dt
Ui =

F̄i−1/2 − F̄i+1/2

∆X
. (4.2)

Here, Ui represents the cell average of cell C̄i and F̄i+1/2 = F(Ui, Ui+1). Henceforth,
we refer to the cell average Ui of cell C̄i as a resolved mode, and the �ux F̄i+1/2 is
called a resolved �ux. However, it is important to note that this resulting scheme
may exhibit reduced accuracy compared to the subgrid scheme described in (4.1).

To resolve the underlying subgrid processes that arise from the discretization on
the underlying �ne mesh (4.1), we aim to represent the resolved modes using the
subgrid modes. To accomplish this, we consider the de�nition of cell averages 3.3,
which give us:

Ui(t) =
1

k

ki∑
j=k(i−1)+1

uj(t). (4.3)

Essentially, we obtain the resolved modes by averaging the subgrid ones. This idea
is similar to box �ltering used in large eddy simulations [Pop00]. By di�erentiat-

12



4.1 Subgrid �ux parameterization

ing (4.3), we obtain

d

dt
Ui =

1

k

ki∑
j=k(i−1)+1

d

dt
uj

=
1

k

ki∑
j=k(i−1)+1

Fj−1/2 − Fj+1/2

∆x

=
Fk(i−1)+1/2 − Fki+1/2

∆X
, (4.4)

where we employed the subgrid semi-discretization (4.1) and the property of tele-
scoping cancellation. To establish the connection between the resolved semi-discrete-
scheme (4.2) and (4.4), we rewrite (4.4) as follows:

d

dt
Ui =

F̄i−1/2 − F̄i+1/2

∆X
+

(
Fk(i−1)+1/2 − Fki+1/2

∆X
−

F̄i−1/2 − F̄i+1/2

∆X

)
=

F̄i−1/2 − F̄i+1/2

∆X
+

1

∆X
[(Fk(i−1)+1/2 − F̄i−1/2)− (Fki+1/2 − F̄i+1/2)].

By introducing the subgrid �ux

Gi+1/2 := Fki+1/2 − F̄i+1/2, (4.5)

we obtain
d

dt
Ui =

(F̄i−1/2 +Gi−1/2)− (F̄i+1/2 +Gi+1/2)

∆X
.

This formulation allows us to fully resolve the subgrid processes resulting from the
discretization on the underlying �ne mesh. By including the subgrid �ux Gi+1/2 in
each resolved �ux term, we account for the e�ects of these subgrid processes and
achieve a more accurate representation.

We proceed by de�ning the subgrid �ux function

G(uki, uki+1, Ui, Ui+1) := Gi+1/2 = F(uki, uki+1)−F(Ui, Ui+1). (4.6)

The main challenge is that calculating the subgrid �ux Gi+1/2 typically involves
solving the problem on a �ne mesh, which we aim to avoid due to its computational
cost. To address this limitation, Alcala and Timofeyev proposed a solution in their
work [Alc21a]. They suggested approximating the subgrid �ux G with a function G̃
that solely depends on the resolved modes. To achieve this, they employed a neural
network to model the function G̃. This innovative approach enables us to e�ciently
compute the subgrid �ux by only relying on resolved modes, thereby eliminating
the need for �ne mesh calculations. Consequently, we will refer to an LLF method
with a subgrid �ux calculated using a neural network as a reduced model.
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4 Model reduction using Neural Networks

4.2 Feedforward neural networks

Machine learning is the discipline that allows computers to learn without being
explicitly programmed to do so. Nevertheless, what do we mean by learning?
Mitchell [Mit97] provides a concise de�nition:

A computer program is said to learn from experience E with respect to
some class of tasks T and performance measure P if its performance at
tasks in T, as measured by P, improves with experience E.

In the context of machine learning, our task is to approximate the subgrid �ux
function G de�ned in equation (4.6) based on a stencil of resolved modes. In Sec-
tion 4.2.1, we explore the use of feedforward neural networks as a possible class of
models capable of transforming resolved variables into subgrid �uxes. A model can
be associated with a parameter-valued function fθ that maps the input (resolved
modes) to the output (subgrid �ux approximation), where θ represents the eventual
multidimensional parameter.

Moving on to Section 4.2.2, we begin with a training set that comprises input data
(resolved modes) and output data (subgrid �uxes). This data set serves as the
experience we provide for our machine learning algorithm. Next, we discuss how we
train the chosen model fθ to �nd a suitable parameter θ that minimizes the error
between the model's predictions and the desired subgrid �uxes in the training set.
This error is quanti�ed using the mean square loss function, and the minimization is
performed using stochastic gradient descent. The mean square loss function acts as
our performance measure, allowing us to evaluate how well the model approximates
the subgrid �uxes.

4.2.1 Model

To approximate the subgrid �ux function G mentioned above, we employ a feed-

forward neural network (FNN). The term network describes this model because
networks are commonly represented as a sequential composition of vector-valued
functions. Speci�cally, we can consider a set of functions G̃1, . . . , G̃n with n ∈ N,
where the overall function G̃ can be expressed as the composition G̃ = G̃n ◦ · · · ◦ G̃1.
Each function G̃i is referred to as the i-th layer of the network. In this context, the
function G̃1 is known as the input layer, G̃n as the output layer, and each function
in between is referred to as a hidden layer. Fig. 4.2 depicts a visual representation
of an FNN, showcasing the interconnected layers.

The term feedforward describes this type of network because information �ows
through the FNN in a unidirectional manner without any feedback loops that would
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4.2 Feedforward neural networks

Input layer

Hidden layer

Output layer

Figure 4.2: Visual representation of a FNN. The �ow of information starts from
the input layer, passes through the hidden layers, and ultimately generates an
output in the output layer. Signi�cantly, information in a feedforward network
moves strictly in one direction and does not �ow backward.

feed the output back into the network. However, it is worth noting that if such feed-
back loops exist, the networks are referred to as recurrent networks. We refer to
Goodfellow et al. [Goo16, Chap. 10] for further details and insights.

Finally, FNNs are named neural due to their loose connection to neuroscience. In
these networks, a layer is typically vector-valued, and each element of this vector
can be considered as a neuron or unit. They are referred to as neurons because their
design is inspired by neuroscienti�c observations about the functions performed by
biological neurons.

Three main components characterize each neuron:

1. A bias parameter b ∈ R,

2. a weight parameter ω ∈ Rn, where n ∈ N represents the dimension of the
input, and

3. an activation function f .

When given an input x ∈ Rn, the output of a neuron is computed as f(ω · x + b),
where ω · x represents the dot product between the weight vector ω and the input
vector x.

Fig. 4.3 illustrates the structure of such a neuron, highlighting its three components.
However, it is essential to note that mathematical and engineering disciplines pri-
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4 Model reduction using Neural Networks

marily guide modern neural network research. The objective of neural networks
is not to model the human brain but to develop robust mathematical models that
excel in various practical applications.

b

xn

ωn

x2 ω2

x1
ω1

...

f

Figure 4.3: A neuron of an FNN. For a given input x = (x1, . . . , xn) ∈ Rn, the
neuron's output is computed as f(ω · x+ b), where ω = (ω1, . . . , ωn) ∈ Rn repre-
sents the weights, b ∈ R denotes the bias, and f represents the chosen activation

function.

Let us discuss the selection of activation functions. One straightforward choice is
the identity f(z) = z, which leads to neurons referred to as linear units. However,
an FNN consisting solely of linear units becomes a linear a�ne mapping, e�ectively
reducing the training process to a linear regression. Therefore, introducing non-
linearity becomes crucial to enable the FNN to learn complex connections.

For hidden layers, the ramp function f(z) = max{0, z} is the widely used activation
function. This function is similar to linear units, making them computationally
e�cient to optimize while introducing the necessary non-linearity to handle complex
functions. However, a limitation of recti�ed linear units (ReLU) is that they cannot
learn if their activation values vanish.

In our thesis, we adopt the leaky ReLU [Maa13] to address this limitation. This
neuron introduces a �xed constant slope parameter α to prevent vanishing acti-
vations for negative inputs. The leaky ReLU's activation function is de�ned as
f(z) = max{αz, z}, and typically, a small value for the slope parameter is chosen,
with a typical value being 0.01.

The upcoming section discusses the automatic training of the FNN's weights and
biases. However, certain decisions regarding the FNN's architecture require careful
consideration. These decisions encompass selecting suitable activation functions,
determining the number of layers, and specifying the number of neurons per layer.

The complexity of the speci�c problem plays a pivotal role in determining the ap-
propriate number of layers and neurons per layer. Networks with multiple hidden
layers can yield e�ective results with signi�cantly fewer neurons per layer, reducing
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4.2 Feedforward neural networks

the number of parameters. Experimentation becomes essential to identify the op-
timal network architecture for our speci�c task. By iteratively experimenting with
di�erent con�gurations, we aim to discover the most suitable FNN architecture that
best meets the requirements of our problem.

4.2.2 Training

Once we have determined an architecture for the FNN, our objective is to �ne-
tune the weights and biases of the network to better approximate the subgrid �ux
function G.

In machine learning, the approximation quality can be described by how the neu-
ral network processes an example. In our case, an example can consist of two
neighboring resolved states Ui and Ui+1, which the network uses to generate an
approximation G̃i+1/2 of the subgrid �ux Gi+1/2 de�ned by (4.5). We refer to Gi+1/2

as the target of the example (Ui, Ui+1). It is important to note that, due to our
setup, the target is not necessarily unique, as it also depends on the subgrid states
ui and ui+1, which are unknown to us. Additionally, an example may contain more
resolved states than just two. The networks we use require an example of four
resolved states, which will be discussed later.

To train the network, we expose it to an entire training set of examples, each
associated with a corresponding target, with such a pair often referred to as a data

point. Our goal is to enable the network to replicate the targets provided in this
set. To evaluate the network's performance during training, we employ the mean

squared loss or quadratic cost function.

Consider a training set consisting of data points {(x1, y1), . . . , (xN , yN )}, where
N ∈ N represents the number of data points. The mean squared loss function C is
then de�ned by

C(ω, b) := 1

N

N∑
j=1

∥G̃(xj , ω, b)− yj∥22. (4.7)

Here, ω denotes the collection of all weights in the FNN, and b represents all the
biases. The function G̃(xj , ω, b) corresponds to the output of the neural network
when processing the input example xj using the current weights and biases. As a

measure of discrepancy between the output G̃(xj , ω, b) and the target yj , we employ
the Euclidean norm ∥·∥2.

The training process aims to minimize the cost function C concerning the network's
weights and biases. We employ the gradient descent method to achieve this. Gradi-
ent descent is built upon the observation that a multi-variable function C, like the
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4 Model reduction using Neural Networks

cost, decreases fastest at a speci�c point p in the direction of the negative gradient
−∇C(p). The negative gradient points toward the steepest descent, where the cost
function is expected to decrease most rapidly. By choosing a small enough step
size or learning rate γ > 0, we can update the current point p using the following
formula:

p̂ = p− γ∇C(p). (4.8)

The new point p̂ obtained through this update will satisfy C(p̂) ≤ C(p), resulting in
a decrease in the function C.

To initiate the optimization process, we start with an initial guess (ω0, b0) and em-
ploy the update formula (4.8) to obtain new parameters (ω1, b1). We repeat this
procedure iteratively until a stopping criterion is met, typically based on a prede�ned
number of iterations or when the improvement in the cost function becomes negli-
gible. This iterative process generates a sequence of parameter sets (ωk, bk)k=0,...,K ,
ideally converging towards the desired minimum, representing the optimal weights
and biases for the network.

Remark 4.1. Indeed, the mean squared error C de�ned in (4.7) may not be dif-
ferentiable at every point when we use recti�ed linear units (ReLU). However, it is
essential to note that the mean squared error remains di�erentiable almost every-
where, despite having a �nite number of non-di�erentiable points. In practice, this is
su�cient because gradient descent typically does not reach these non-di�erentiable
points.

A substantial amount of data points is typically required to ensure our network
can generalize well, extending its capability beyond the training set. However,
employing gradient descent with the entire dataset results in a computationally
expensive process due to the cost function's dependence on all data points. To
address this issue, we can adopt a technique known as stochastic gradient descent

(SGD), where the dataset is randomly divided into batches of a speci�c size, known
as the batch size. The gradient of the cost function is approximated by averaging
the gradients of local cost functions calculated on each batch. In neural networks,
each optimization step is referred to as an epoch. It is worth noting that SGD drives
most neural network learning.

Aside from SGD, other optimization algorithms have gained popularity and deserve
mentioning. One such algorithm is Adagrad [Duc11], which employs adaptive learn-
ing rates for individual parameters during training. Other notable algorithms are
RMSProp [Hin12] and Adam[Kin14], which also incorporate adaptive learning rates
for individual parameters.
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4.2 Feedforward neural networks

An essential algorithm to mention in the context of neural networks is backpropa-
gation. Backpropagation is used to calculate the gradient of the cost function at a
speci�c point during the training process. This algorithm employs a straightforward
and cost-e�ective procedure, signi�cantly enhancing the e�ciency of training neural
networks. Backpropagation gained widespread popularity following an experimen-
tal analysis published by Rumelhart et al. [Rum86]. More details regarding this
technique can be found in Goodfellow et al. [Goo16].

Generalization is a critical aspect we must address to prevent the issue of over�tting.
Over�tting occurs when a neural network becomes too specialized in reproducing the
training data accurately, resulting in poor performance on unseen data. To tackle
this problem, during the training process, when we update the model's weights and
biases using the training set, we also evaluate its performance on a separate dataset
called the validation set, which is explicitly not used for training.

The validation set serves as a good indicator of the network's ability to generalize
to new data. If the training error decreases, but the validation error remains high
or even increases, this strongly suggests over�tting is occurring. It is common to
allocate 80% of the available data for training and 20% for validation. To achieve
optimal results, we experiment with adjusting hyperparameters, such as those related
to the network architecture (e.g., number of layers or neurons per layer) and the
learning rate of the optimization algorithm, to obtain a minimal validation cost.
This process helps us �ne-tune the model and ensures that it performs well on the
training data and on new, unseen data.

In order to address the issue of over�tting, numerous regularization techniques have
been developed. One such straightforward method is early stopping. This technique
suggests stopping the training process if the validation error fails to improve after
a certain number of epochs.

Another approach is data normalization for both input and output. During the
training phase, the network is trained using the normalized data. However, during
prediction, we need to transform the inputs using the mean and standard deviation
of the examples in the training data. This transformation ensures consistency with
the data the network was trained on. Since the network learned with normalized
labels during training, we use the mean and standard deviation of the labels from
the training data to transform the output during prediction. Ensuring this normal-
ization consistency allows the model's predictions to be aligned with the original
scale of the output data, despite training being performed with normalized labels.

This thesis employs early stopping and data normalization as part of our regular-
ization strategy. It is worth noting that various other regularization techniques
have been introduced. One notable example is dropout, a method that randomly
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4 Model reduction using Neural Networks

deactivates certain units during training to prevent over-reliance on speci�c connec-
tions. Additionally, we incorporate L2 regularization, which adds a penalty term to
the cost function to discourage the model from emphasizing speci�c features with
substantial weights. For further exploration of di�erent regularization methods, we
recommend referring to [Goo16].
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5 Monolithic Convex Limiting

Using a neural network to approximate subgrid �uxes introduces the risk of encoun-
tering issues such as under- and overshoots, which could result in negative heights
and disrupt the algorithm's functionality. To address these challenges, we integrate
the monolithic convex limiting (MCL) strategy proposed by Kuzmin [Kuz20] into
our approach. The MCL approach enables us to e�ectively control and restrict the
subgrid �uxes generated by the neural network, ensuring numerical admissibility
and maintaining height positivity within the scheme.

Section 5.1 discusses the MCL approach's underlying principles and design philos-
ophy. In Section 5.2, we conclude this chapter by presenting the speci�c limiting
strategy we have implemented to stabilize the reduced model.

5.1 Design philosophy

The MCL strategy is built upon the �ux-corrected transport (FCT) method, initially
introduced by Boris and Book [Boo75] in the context of �nite di�erence approxi-
mations. Later, Zalesak extended FCT to �nite volume approximations in [Zal79].
Although initially proposed in a �nite element setting, the MCL strategy can also
be adapted for the �nite volume framework, as demonstrated in [Kuz22]. For a more
comprehensive MCL approach that applies to multidimensional SWE with non-�at
bathymetry, we refer to [Haj22a] and [Haj22b].

Typically, the MCL approach adopts a high-order �nite volume method as its target
scheme. However, such methods often need to be revised for hyperbolic problems
like the SWE due to spurious oscillations. To address this issue, we adopt a two-
step strategy. Firstly, we select a low-order method that preserves key properties.
This base discretization is the LLF method introduced in Chapter 3. The LLF
method serves as the foundation for our approach. Next, we construct the desired
target scheme by augmenting the LLF method with antidi�usive �uxes. These
antidi�usive �uxes are determined as the di�erence between the numerical �ux of
the target scheme and that of the low-order LLF method. This combination allows
us to restore some high-order accuracy. However, in order to e�ectively eliminate
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5 Monolithic Convex Limiting

the above-mentioned oscillations and enforce fundamental properties, MCL limits
the raw antidi�usive �uxes.

Typically, MCL considers a high-order �nite volume method as a target scheme.
However, such methods are generally unsuitable for hyperbolic problems such as
the SWE due to spurious oscillations, for example, caused by Gibbs phenomena.
To overcome this issues, we �rst choose a low-order, property-preserving, but dif-
fusive method as a base discretization. This is the LLF method we introduced in
Chapter 3. We may obtain the original target scheme by adding antidi�usive �uxes
de�ned by the di�erence between the numerical �ux of the target and the low-order
scheme. However, to eliminate or reduce the above oscillations, MCL limits the raw
antidi�usive �uxes. Instead of a high-order �nite volume method, we consider our
reduced model.

We now aim to provide a more detailed speci�cation of the MCL procedure, partic-
ularly concerning the raw antidi�usive �ux. In this context, choosing a higher-order
method as the target scheme is unnecessary. Instead, we can select our previously
introduced reduced model from Chapter 4.

Let us �x i = 1, . . . , N . We denote the LLF numerical �ux as FL
i+1/2. Furthermore,

the numerical �ux of the reduced model, introduced in Section 4.1, is de�ned as

FR
i+1/2 := FL

i+1/2 + G̃i+1/2.

Here, G̃i+1/2 represents the subgrid �ux calculated by the neural network, which we
will refer to as the network subgrid �ux from now on. As previously mentioned,
the raw antidi�usive �ux FA

i+1/2 is obtained by subtracting the LLF �ux from the
reduced model's numerical �ux:

FA
i+1/2 := FR

i+1/2 − FL
i+1/2 = G̃i+1/2.

Thus, it is evident that the network subgrid �ux G̃i+1/2 serves as the raw antidi�usive
�ux in the MCL procedure.

To gain a better understanding of the objectives for the limited counterpart G̃∗
i+1/2 of

the network subgrid �ux G̃i+1/2, we introduce limited bar states proposed by [Kuz20]:

ū∗,±i+1/2 := ūi+1/2 ±
G̃∗

i+1/2

λi+1/2
. (5.1)

Here, ūi+1/2 is given by (3.5). By using these limited bar states, we can rewrite the
semi-discretization

dui
dt

=
1

∆x

[
(Fi−1/2 + G̃∗

i−1/2)− (Fi+1/2 + G̃∗
i+1/2)

]
, i = 1, . . . , N,
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5.2 Sequential limiting

in a manner similar to (3.7), as follows:

dui
dt

=
1

∆x

[
λi−1/2(ū

∗,+
i−1/2 − ui) + λi+1/2(ū

∗,−
i+1/2 − ui)

]
, i = 1, . . . , N. (5.2)

When we discretize (5.2) in time using the forward Euler method, we obtain the
following updated formula, proposed in [Gue16, Kuz20]:

ûi =
(
1− ∆t

∆x
(λi−1/2 + λi+1/2)

)
ui +

∆t

∆x

(
λi−1/2ū

∗,+
i−1/2 + λi+1/2ū

∗,−
i+1/2

)
, (5.3)

where i = 1, . . . , N . This equation resembles (3.13), which we introduced in Sec-
tion 3.4 to establish the HPP property of the fully discretized LLF scheme. If we
assume that the time step ∆t is su�ciently small, satisfying the CFL-like condi-
tion

∆t ≤ 1

λi−1/2 + λi+1/2
∆x,

and the limited bar states ū∗,+i+1/2 and ū∗,−i−1/2 lie in a speci�c convex admissible set

Ai ⊂ {(h, q) : h > 0} that also contains ui, then the update ûi, as given by (5.3),
is a convex combination of elements of the set Ai. Consequently, we have ûi ∈ Ai,
and the scheme satis�es the HPP property.

We choose the admissible set Ai in such a way that we enforce numerical admissibil-
ity conditions, which reduce or eliminate over and undershoots as mentioned above.
By appropriately constraining ū∗,±i+1/2 to ensure the HPP property of the fully discrete

scheme (5.3), this also guarantees the HPP property of full discretizations of (5.2)
using other SSP Runge-Kutta methods for time discretization. This is because each
stage in an SSP Runge-Kutta method is a convex combination of a forward Euler
update (5.3) and ui.

In the following section, we will detail the bounds for the individual components of
the limited bar states, which will provide a representation of the limited �uxes. The
boundaries established here will implicitly de�ne the admissible set Ai, making a
separate speci�cation unnecessary.

5.2 Sequential limiting

Before we present the approach pursued by this chapter to enforce the numerical
admissibility conditions, we highlight a few suggestions from the literature. Ini-
tially, limiting each component could be considered. However, this approach leads
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to spurious oscillations [Löh87]. To address this issue, Löhner proposed a synchro-

nized limiter in [Löh87], where the network subgrid �ux G̃i+1/2 is adjusted using a
correction factor αi+1/2 ∈ [0, 1], i.e.,

G̃∗
i+1/2 = αi+1/2G̃i+1/2.

Examples of modern synchronized �ux correction schemes can be found in [Loh16,
Gue18, Paz21].

In this thesis, we employ the sequential limiting technique, �rst introduced by [Dob18]
and further developed in [Haj19, Kuz20]. Instead of enforcing the numerical admis-
sibility constraints on conserved quantities, height, and discharge, this approach
enforces them on the derived ones, i.e., height, and velocity. Our presentation of
the sequential limiting technique is based on [Kuz20, Sec. 5.1], where the author dis-
cusses the technique in the context of the Euler equations. We adapt this approach
to the context of SWE, as described below.

Let us consider a �xed index i = 1, . . . , N . As a general rule, the admissible set Ai

must contain the bar and limited bar states, which are associated with the edges of
the cell Ci, i.e.,

ūi−1/2, ūi+1/2 ∈ Ai, ū∗,−i−1/2, ū
∗,+
i+1/2 ∈ Ai, (5.4)

where the bar and limited bar states are de�ned in (3.5) and (5.1). The property
in (5.4) for the i-th and i+ 1-th admissible set implies

ū∗,+i+1/2 ∈ Ai, ū∗,−i+1/2 ∈ Ai+1. (5.5)

Let us start by limiting the height component. Motivated by (5.5), we design the
limited height bar states h̄∗,±i+1/2 using the constraints

hmin
i ≤ h̄∗,−i+1/2 ≤ hmax

i , hmin
i+1 ≤ h̄∗,+i+1/2 ≤ hmax

i+1 , (5.6)

where the local bounds hmin
i and hmax

i are de�ned by

hmin
i := min{h̄i−1/2, h̄i+1/2}, hmax

i := max{h̄i−1/2, h̄i+1/2}. (5.7)

To derive constraints for the height component of the limited network subgrid �ux
G̃h,∗

i+1/2, we rewrite (5.6) to

bh,Li+1/2 ≤ −G̃h,∗
i+1/2 ≤ Bh,L

i+1/2, bh,Ri+1/2 ≤ G̃h,∗
i+1/2 ≤ Bh,R

i+1/2, (5.8)
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where

bh,Li+1/2 = λi+1/2(h
min
i − h̄i+1/2), Bh,L

i+1/2 = λi+1/2(h
max
i − h̄i+1/2),

bh,Ri+1/2 = λi+1/2(h
min
i+1 − h̄i+1/2), Bh,R

i+1/2 = λi+1/2(h
max
i+1 − h̄i+1/2).

The �rst inequality in (5.8) constrains the out�ow caused by the limited network

subgrid �ux G̃∗,h
i+1/2 on the left-hand side of the edge xi+1/2 and the second inequality

constrains the in�ow on the right-hand side.

A particular choice for the limited network subgrid �ux G̃∗,h
i+1/2 proposed by [Kuz20]

is

G̃h,∗
i+1/2 =

min
{
G̃h

i+1/2, −bh,Li+1/2, B
h,R
i+1/2

}
, if G̃h

i+1/2 ≥ 0,

max
{
G̃h

i+1/2, −Bh,L
i+1/2, b

h,R
i+1/2

}
, else.

(5.9)

For alternative variations of these choices, we refer to [Kuz22].

Remark 5.1. The presented limiting technique for the height component is identi-
cal to the procedure employed for a scalar problem, as discussed in [Kuz20, Sec. 4].
The author uses the bounds

umin
i := min{ui−1, ui, ui+1}, umax

i := max{ui−1, ui, ui+1}.

These bounds are su�cient for the scalar case since the bar states ūi−1/2 and ūi+1/2,
de�ned in (3.5), are guaranteed to be within the interval [umin

i , umax
i ]. However,

it is essential to note that this property is valid only for the bar states of scalar
conservation laws. For systems like the SWE, the bar states must be included in
the de�nition of umax

i and umin
i .

Next, we aim to limit G̃∗,q
i+1/2 to satisfy the numerical admissibility conditions for

individual velocity components. To do this, we need to specify the local bounds.
Let us �rst de�ne the velocity bar state

v̄i+1/2 :=
q̄i+1/2

h̄i+1/2

. (5.10)

Then, similar to the de�nition of the local height bounds in (5.7), we de�ne the
local velocity bounds

vmin
i := min{v̄i−1/2, v̄i+1/2}, vmax

i := max{v̄i−1/2, v̄i+1/2}.
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With these bounds, we can now specify the numerical admissibility constraints that
will be used to limit G̃q

i+1/2. The constraints are

h̄∗,−i+1/2v
min
i ≤ q̄∗,−i+1/2 ≤ h̄∗,−i+1/2v

max
i , h̄∗,+i+1/2v

min
i+1 ≤ q̄∗,+i+1/2 ≤ h̄∗,+i+1/2v

max
i+1 , (5.11)

where the limited discharge bar state is de�ned according to (5.1):

q̄∗,±i+1/2 = q̄i+1/2 ±
G̃q,∗

i+1/2

λi+1/2
. (5.12)

As proposed by Kuzmin [Kuz20], we rewrite (5.12) to

q̄∗,±i+1/2 = q̄i+1/2 ±
G̃q,∗

i+1/2

λi+1/2

= h̄∗,±i+1/2v̄i+1/2 + (q̄i+1/2 − h̄∗,±i+1/2v̄i+1/2)±
G̃q,∗

i+1/2

λi+1/2

= h̄∗,±i+1/2v̄i+1/2 + (q̄i+1/2 − h̄i+1/2v̄i+1/2)±
1

λi+1/2
(G̃q,∗

i+1/2 − G̃h,∗
i+1/2v̄i+1/2)

= h̄∗,±i+1/2v̄i+1/2 ±
1

λi+1/2
(G̃q,∗

i+1/2 − G̃h,∗
i+1/2v̄i+1/2),

where we used the de�nition of the limited height bar state (5.1) and the velocity
bar state (5.10). Hence, we can also represent the limited discharge bar state (5.12)
as

q̄∗,±i+1/2 = h̄∗,±i+1/2v̄i+1/2 ±
gq,∗i+1/2

λi+1/2
,

where gq,∗i+1/2 is a limited counterpart of

gqi+1/2 = G̃q
i+1/2 − G̃h,∗

i+1/2v̄i+1/2. (5.13)

We limit gqi+1/2 as described above. First, we rewrite the constraints (5.11) into the
form

bq,Li+1/2 ≤ −gq,∗i+1/2 ≤ Bq,L
i+1/2, bq,Ri+1/2 ≤ gq,∗i+1/2 ≤ Bq,R

i+1/2,

where

bq,Li+1/2 = λi+1/2h̄
∗,−
i+1/2(v

min
i − v̄i+1/2), Bq,L

i+1/2 = λi+1/2h̄
∗,−
i+1/2(v

max
i − v̄i+1/2),

bq,Ri+1/2 = λi+1/2h̄
∗,+
i+1/2(v

min
i+1 − v̄i+1/2), Bq,R

i+1/2 = λi+1/2h̄
∗,+
i+1/2(v

max
i+1 − v̄i+1/2).
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5.2 Sequential limiting

The limited counterpart of gqi+1/2 is then given by

gq,∗i+1/2 =

min
{
gqi+1/2, −bq,Li+1/2, B

q,R
i+1/2

}
, if gqi+1/2 ≥ 0,

max
{
gqi+1/2, −Bq,L

i+1/2, b
q,R
i+1/2

}
, else.

(5.14)

Inspired by the de�nition of gqi+1/2 in (5.13), we �nally obtain the expression for the
discharge component of the limited network subgrid �ux

G̃q,∗
i+1/2 = gq,∗i+1/2 + G̃h,∗

i+1/2v̄i+1/2. (5.15)

Thus, the overall limited subgrid network �ux G̃∗
i+1/2 is given by its height compo-

nent (5.9) and its discharge component (5.15).
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6 Numerical Examples

This chapter focuses on implementing and analyzing two subgrid parameterizations
introduced in Chapter 4. Speci�cally, we denote the �rst reduced model as NN-1,
while the second is NN-2. These parameterizations di�er in the degree of coarsening
they apply. NN-1 simulates an LLF method with a mesh eight times �ner, while
NN-2 employs the coarsening degree of 40.

Additionally, we will enhance these reduced models by incorporating the MCL tech-
nique. MCL-NN-1 denotes the �rst limited reduced model equipped with MCL, and
the second is MCL-NN-2. We may append the number of cells in the underlying
mesh to distinguish the di�erent mesh sizes. For example, LLF-400 indicates that
the underlying mesh size for the LLF method is 400.

We present the �rst reduced model in Section 6.1. We provide insights into the
architecture and training procedure of the underlying network, followed by testing
the model by computing solutions for four initial conditions. The underlying net-
work of the second model is similar to the �rst, but in Section 6.2, we highlight the
di�erences in architecture and training procedure. We also perform the same test
on the second model using the same four initial conditions. However, we observe
spurious oscillations in the second model, which leads us to apply the MCL strategy
to both reduced models in Section 6.3.

To further evaluate the models, we apply tests with a more signi�cant number of
initial conditions in Section 6.4. We examine the relative errors over time and even
employ initial conditions outside the training set range to observe the performance
of our models beyond their training range. However, it is worth noting that our
models demonstrate slower computation times compared to the reference methods,
and we address this issue in Section 6.5 by making necessary adjustments to the
time step.

Throughout this chapter, we solve the SWE on the domain [0, 100] up to a �nal
time T = 40 while using the gravitational acceleration g = 9.812. Our simula-
tions assume periodic boundary conditions, and to interpolate initial conditions, we
calculate cell averages using a quadrature formula. We employ the Heun method
for temporal discretization, as introduced in Section 3.3. We combine this method
with a constant time step of the form ∆t = ν∆x, where ν > 0 represents the CFL
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6.1 First model

parameter. Speci�cally, for LLF methods, we set ν = 0.1, which satis�es the CFL
condition (3.12) discussed in Section 3.4, in conjunction with the initial conditions
used in this chapter. The CFL parameter for the reduced models will be further
discussed later on.

All the results presented in this chapter can be replicated using the author's Python
framework [Sch23].

6.1 First model

6.1.1 Network Architecture

We consider a coarse mesh consisting of 50 cells, and the objective of the reduced
model NN-1 is to simulate the LLF method on a �ne mesh comprising 400 cells. To
achieve this, NN-1 employs a network G̃1 to approximate the subgrid �ux function,
as proposed in Section 4.1. In the context of SWE, the subgrid �ux function has two
components. Hence, we need two output neurons to represent these components.

In terms of the input layer, there are several choices available. Initially, a natural
option would be to use the neighboring resolved modes Ui and Ui+1, as de�ned
in (4.3). However, employing only these values resulted in relatively poor network
performance. Therefore, we suggest considering a larger stencil of reduced modes by
incorporating the values Ui−1, Ui, Ui+1, and Ui+2 as inputs. This extended stencil
has proven to yield improved results in approximating the subgrid �ux function.

Indeed, similar observations were made by Alcala in [Alc21b], where a two-point
stencil was found to be insu�cient. This limitation might be attributed to the fact
that using only two points does not provide enough information to estimate local
smoothness accurately. We suspect that by increasing the stencil to incorporate
more neighboring resolved modes, the network gains the ability to estimate whether
a subgrid �ux should be computed within a steep gradient or in a smoother region.

In summary, our network G̃1 consists of 8 input neurons (two for each resolved
mode) and two output neurons. Fig. 6.1 illustrates this network architecture, with
the hidden neurons not shown for simplicity.

Regarding the rest of the architecture, the underlying network of NN-1, G̃1, consists
of two hidden layers, each with 32 neurons. We employ leaky ReLUs, as introduced
in Section 4.2.1, in the hidden layers, with the slope parameter set to α = 0.01.
Furthermore, we use linear units in the output layer. Finally, each network provides
data normalization in both the input and output layers. For further details on data
normalization, please refer to Section 4.2.2.
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hi−1 qi−1 hi qi hi+1 qi+1 hi+2 qi+2

Hidden layer(s)

G̃h
i+1/2 G̃q

i+1/2

Figure 6.1: Visual representation of the neural networks to approximate the
subgrid �ux. To get the approximate value G̃i+1/2 for the subgrid �ux Gi+1/2, the
input layer processes four resolved modes. In the SWE context, each quantity
consists of two values, one for the height and one for the discharge component.

6.1.2 Training

This section covers the training procedure of the NN-1 network G̃1. To begin, we
require a data set for training and validation, as mentioned in Section 4.2.2. The
data set comprises examples and corresponding labels. As discussed in the previous
section, the examples are stencils of resolved modes, while the labels correspond
to the real subgrid �uxes Gi+1/2 de�ned by (4.5). Given that we assume periodic
boundary conditions, we can consider subgrid �uxes Gi+1/2 of an edge xi+1/2 for a
�xed i = 1, . . . , 50.

For our particular scenario, we �x i = 2 and utilize the time series of U0, U1, U2,
and U3 as examples, with G2+1/2 as their corresponding labels. It is essential to
reiterate that each variable has height and discharge components.

To construct time series of resolved modes and corresponding subgrid �uxes, we
begin by generating 100 randomly oscillating initial data of the type

h0(x) = H0 +Ah sin(2πkhx/L+ φh), v0(x) = V0 +Av sin(2πkvx/L+ φv), (6.1)

where x ∈ [0, L] and L = 100. The height average is constant for all initial condi-
tions, i.e., H0 = 2.0. The remaining parameters are randomly generated following
the distributions

V0 ∼ U(1, 2), Ah, Av ∼ U(0.2, 0.6),
kh, kv ∼ U{1, 6}, φh, φv ∼ U(0, 2π),

(6.2)

where U(a, b) denotes the continuous uniform distribution between a, b ∈ R and
U{n,m} represents the discrete uniform distribution between n,m ∈ N. These
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6.1 First model

initial data con�gurations model �uids moving from left to right with an average
height of 2.0.

Next, we calculate spatial and temporal discretization for a given initial condition.
For the spatial discretization, we employ the LLF method, introduced in Section 3.2,
on the �ne mesh, which consists of 400 cells. Regarding temporal discretization, we
use Heun's method, presented in Section 3.3, to perform time steps until reaching
T = 40. During each Heun update, we compute the coarse cell averages U1, U2, U3,
U4, as well as the subgrid �ux G2+1/2 using (4.3) and (4.5). We then add these values
to our data set. We must note that we exclude the intermediate stages of Heun's
method from the data set. This procedure for all 100 initial conditions results in a
�nal data set containing approximately 160,000 data points.

Subsequently, we randomly partition the resulting data set into training and val-
idation sets. The training set contains 80% of the data, while the validation set
comprises the remaining 20%. Stochastic gradient descent is employed as the opti-
mizer, with a batch size of 128. As a regularization technique, we implement early
stopping. The network G̃1 is trained for approximately 2000 epochs, using a learning
rate of γ = 0.01. Please refer to Section 4.2.2 for further in-depth information.

The training process is performed using the Python library skorch[Tie17], which
serves as a PyTorch[Pas19] wrapper, built upon scikit-learn [Ped11].

6.1.3 Tests

We begin with a preliminary test, and in Section 6.4, we subject the reduced model
NN-1 to more comprehensive testing. For this initial test, we select four initial
conditions of the form (6.1). The speci�c parameters used for each initial condition
are listed in Tab. 6.1, and the initial conditions are depicted in Fig. 6.2.

(a) Height parameters

Initial Datum H0 Ah kh φh

1 2.0 0.2 1 0.0
2 2.0 0.0 0 0.0
3 2.0 0.2 3 0.0
4 2.0 0.45 4 2.78

(b) Velocity parameters

Initial Datum V0 Av kv φv

1 1.0 0.0 0 0.0
2 1.0 0.5 1 0.0
3 1.0 0.0 0 0.0
4 1.1 0.5 3 4.5

Table 6.1: Parameters of the initial conditions of type (6.1) used for testing.

The �rst three initial conditions are designed to exhibit either constant velocity or
constant height. However, the last initial condition is oscillatory in both compo-
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6 Numerical Examples

(a) Water level (b) Discharge (c) Velocity

(d) Water level (e) Discharge (f) Velocity

(g) Water level (h) Discharge (i) Velocity

(j) Water level (k) Discharge (l) Velocity

Figure 6.2: Initial conditions were used for testing the reduced models. Each row
belongs to an initial condition of type (6.1), and the corresponding parameters are
de�ned in Tab. 6.1.
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6.2 Second model

nents. It serves as a challenging test case intended to assess the limitations of the
second reduced model (refer to Section 6.2).

In Fig. 6.3, we illustrate discretizations at T = 40 obtained with Heun's method
for the above-mentioned initial conditions. Alongside NN-1 and the target scheme
(LLF method on 400 cells), we also calculate the unmodi�ed LLF method on 50
cells. Additionally, we employ an LLF method on 10000 cells to compute a reference
solution. For all LLF methods, we use a CFL parameter of ν = 0.1. To ensure
that the reduced model's time steps match the target model's, we adjust the CFL
parameter and set it to ν = 0.0125.

In Fig. 6.3, we observe that the reduced model NN-1 reproduces the target scheme
for all initial conditions. Furthermore, it is evident from the results that the subgrid
�ux shows an antidi�usive behavior. This is evident when comparing the LLF
scheme on 50 cells, which shows considerable di�usion, to the one used on 400 cells.
However, the LLF method on 400 cells is still di�usive compared to the reference
discretization. The subsequent reduced model aims to reproduce an LLF method
on 2000 cells using the coarse mesh of only 50 cells to address this.

6.2 Second model

For the reduced model NN-2, we continue employing a coarse mesh of 50 cells.
However, unlike NN-1, NN-2 aims to simulate the LLF method on a mesh comprising
2000 cells instead of 400 cells. The underlying network of NN-2 is denoted as G̃2

and, similar to NN-1, it also focuses on approximating the subgrid �ux function, as
introduced in Section 4.1.

Similar to the architecture of the underlying network in the �rst reduced model,
as discussed in Section 6.1.1, G̃2 employs eight neurons in the input layer and two
neurons in the output layer. It also uses leaky ReLUs as hidden neurons and linear
units as output neurons. Furthermore, G̃2 includes normalization layers for both
the input and output. The primary distinction between G̃1 and G̃2 lies in the design
of the hidden layers. While G̃1 has two hidden layers, each with 32 neurons, G̃2

consists of three hidden layers, each with 128 neurons.

The data set used for training and validation is generated similarly to that of the
�rst model. However, since we use a �ner mesh than the �rst example, the time
steps become smaller. As a result, the data set contains approximately 800,000 data
points, surpassing the size of the �rst data set.

The training of the network G̃2 is similar to the one of the network G̃2, as described
in Section 6.1.2. We initiate by randomly partitioning the data set into training
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6 Numerical Examples

(a) Water level (b) Discharge (c) Velocity

(d) Water level (e) Discharge (f) Velocity

(g) Water level (h) Discharge (i) Velocity

(j) Water level (k) Discharge (l) Velocity

Figure 6.3: SWE with initial conditions illustrated in Fig. 6.2. Discretizations
at T = 40 were obtained with Heun's method on periodic meshes. The reference
discretization is generated with an LLF scheme on a uniform mesh consisting of
10000 cells.
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and validation sets. The training set contains 80% of the data, while the validation
set comprises the remaining 20%. Stochastic gradient descent is employed as the
optimizer, with a batch size of 128. As a regularization technique, we implement
early stopping. However, there is a slight di�erence in the training approach com-
pared to G̃1. We train the network G̃2 twice using di�erent learning rates and early
stopping. Initially, we train for almost 500 epochs with a learning rate of γ = 0.1.
Subsequently, we continue training for another 2000 epochs with a lower learning
rate of γ = 0.001.

After training, we can perform the preliminary test proposed in Section 6.1.3. We
select the same four initial conditions of the form (6.1) and speci�c parameters listed
in Tab. 6.1. Fig. 6.2 depicts these initial conditions.

In Fig. 6.4, we present discretizations at T = 40 obtained using Heun's method for
the mentioned initial conditions. We compare the second reduced model NN-2 with
the target scheme (LLF method on 2000 cells) and the �rst reduced model NN-
1. Additionally, we employ an LLF method on 10000 cells to compute a reference
solution. To ensure that the reduced model's time steps match the target scheme,
we adjust the CFL parameter and set it to ν = 0.0025. As discussed earlier, the
CFL parameter for the LLF schemes is chosen as ν = 0.1, and for NN-1, it is set to
ν = 0.0125.

As expected, the discretization provided by NN-2 demonstrates lower di�usivity
than NN-1. However, NN-2 encounters challenges in accurately reproducing the
target scheme (LLF method on 2000 cells). In particular, NN-2 deviates the most
from the target discretization at local extrema or points with steep gradients. This
discrepancy may be attributed to the rarity of associated events in the training data,
as the data only provides the time evolution of discretizations from one speci�c
point.

In speci�c cases, such as the last initial condition, the scheme becomes unstable
(refer to Fig. 6.4j, Fig. 6.4k, and Fig. 6.4l). Interestingly, this unstable behavior is
observed in only a small subset of initial conditions. Initial conditions with high
oscillations may likely lead to such behavior.

6.3 Limited models

As we have noticed spurious oscillations in a few cases with the second reduced model
NN-2, we apply the MCL strategy (see Section 5) to both models and perform the
same preliminary test as we did for the unlimited counterparts in Sections 6.1.3

35



6 Numerical Examples

(a) Water level (b) Discharge (c) Velocity

(d) Water level (e) Discharge (f) Velocity

(g) Water level (h) Discharge (i) Velocity

(j) Water level (k) Discharge (l) Velocity

Figure 6.4: SWE with initial conditions illustrated in Fig. 6.2. Discretizations
at T = 40 were obtained with Heun's method on periodic meshes. The reference
discretization is generated with an LLF scheme on a uniform mesh consisting of
10000 cells.
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and 6.2. We denote the limited versions of NN-1 and NN-2 as MCL-NN-1 and
MCL-NN-2, respectively.

We select the same four initial conditions of the form (6.1) and speci�c parameters
listed in Tab. 6.1, where the initial conditions are depicted in Fig. 6.2.

We begin investigating MCL-NN-1. In Fig. 6.5, we illustrate discretizations at T =
40 obtained using Heun's method for the mentioned initial conditions. We compare
the MCL-NN-1 with its unlimited counterpart NN-1 and the target scheme (LLF
method on 400 cells). As discussed earlier, the CFL parameter for the LLF scheme
is ν = 0.1, and for MCL-NN-1 and NN-1, it is set to ν = 0.0125. The di�erences
between the MCL version of the model and the original model are insigni�cant, but
the MCL version tends to be slightly more di�usive at local extrema.

Let us move on to MCL-NN-2. In Fig. 6.6, we showcase discretizations at T = 40 ob-
tained using Heun's method for the mentioned initial conditions. We compare MCL-
NN-2 with its unlimited counterpart NN-2 and the target scheme (LLF method on
2000 cells). As previously discussed, the CFL parameter for the LLF scheme is
ν = 0.1, and for MCL-NN-2 and NN-2, it is set to ν = 0.0025.

For the �rst three initial conditions, similar to MCL-NN-1, the di�erences between
MCL-NN-2 and NN-2 are not substantial. However, MCL-NN-2 tends to be slightly
more di�usive at local extrema while also exhibiting a smoother behavior. Addi-
tionally, in Fig. 6.6j, Fig. 6.6k, and Fig. 6.6l, we can observe that MCL successfully
stabilizes NN-1 for the fourth initial condition. Let us examine this case more
closely.

Fig. 6.7 depicts discretizations of MCL-NN-2 and the target LLF scheme for the
fourth initial condition without employing NN-2.

The discretization of MCL-NN-2 is less accurate than for the other initial condi-
tions. However, there are noticeable di�erences between the height and momentum
discretizations. Compared to the discharge discretization, MCL-NN-2 simulates
the height discretization of LLF-2000 relatively accurately. On the other hand,
MCL-NN-2 faces challenges in resolving all local extrema of the LLF-2000 discharge
discretization, likely due to its oscillatory nature. Nevertheless, MCL-NN-2 repro-
duces the overall shape of the LLF-2000 discharge discretization, and approximately
every second extremum is resolved relatively accurately. The intermediate regions
are adequately approximated on average.
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(a) Water level (b) Discharge (c) Velocity

(d) Water level (e) Discharge (f) Velocity

(g) Water level (h) Discharge (i) Velocity

(j) Water level (k) Discharge (l) Velocity

Figure 6.5: SWE with initial conditions illustrated in Fig. 6.2. Discretizations
T = 40 were obtained with Heun's method on periodic meshes.

38



6.3 Limited models

(a) Water level (b) Discharge (c) Velocity

(d) Water level (e) Discharge (f) Velocity

(g) Water level (h) Discharge (i) Velocity

(j) Water level (k) Discharge (l) Velocity

Figure 6.6: SWE with initial conditions illustrated in Fig. 6.2. Discretizations
at T = 40 were obtained with Heun's method on periodic meshes.
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(a) Water level (b) Discharge (c) Velocity

Figure 6.7: SWE with initial condition illustrated in Fig. 6.2j, Fig. 6.2k and
Fig. 6.2l. Discretizations at T = 40 obtained with Heun's method on periodic
meshes.

6.4 Performance outside the training range

This section presents more comprehensive tests of our reduced models, speci�cally
focusing on their performance outside the training range. Since the second reduced
model NN-2 is potentially unstable, as observed in Section 6.2, we focus on the �rst
reduced model NN-1 and the limited counterparts of both models, MCL-NN-1 and
MCL-NN-2.

Our main objective is to analyze the accuracy evolution of these models across
various initial conditions. We assess accuracy by calculating the relative error con-
cerning the corresponding LLF target scheme. Here is a more detailed explanation
of our approach:

1. For a given set of initial conditions, we compute discretizations using the
following methods: NN-1-50, MCL-NN-1-50, LLF-400, MCL-NN-2-50, and
LLF-2000. We employ Heun's method and evaluate these discretizations up
to T = 40, considering the number of cells in the underlying mesh as indicated
in their respective names. We use the CFL parameters as previously de�ned:
ν = 0.1 for LLF methods, ν = 0.0125 for NN-1 and MCL-NN-1, and ν =
0.0025 for MCL-NN-2.

2. Since our reduced models aim to replicate the discretizations of the corre-
sponding LLF schemes on a coarse mesh, we average the LLF method dis-
cretizations using the average operation (4.3).

3. Next, we determine the relative L2 errors between each reduced model's dis-
cretization and the corresponding averaged LLF discretization for each time
step. This process yields a time series of relative errors for each initial condi-
tion.
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6.4 Performance outside the training range

4. Finally, we consider either the mean or the maximum of the relative errors for
each time point in the time series as our measure of accuracy.

By following this methodology, we can comprehensively assess and compare the
accuracy performance of the reduced models under various initial conditions. We
begin by generating time series of relative errors for initial conditions within the
training, serving as a reference. Subsequently, we systematically explore initial
conditions outside the training range and compare their relative error evolutions
with the reference errors.

Reference errors

For the reference errors, we generate 20 initial conditions of type (6.1), where all
parameters are randomly generated from the distribution speci�ed in (6.2). It is
important to emphasize that these initial conditions are distinct from the ones we
used in the training set. Fig. 6.8 illustrates the time series of the mean and maximum
relative L2-error of the height and discharge discretizations. The maximum relative
L2 error is computed for each time step and, therefore, is unrelated to a speci�c
initial condition.

Firstly, it is evident that the relative error evolutions of the height and discharge
discretizations exhibit similar patterns in the pro�le, with the errors of the dis-
charge discretizations being approximately 2.5 times larger than those of the height
discretizations. As a result, we will focus on the time series of the relative error
concerning the height discretizations in the subsequent analysis.

Upon examining the relative error plots, we observe in all cases that the maximum
relative errors initially rise steeply and then gradually decrease. In contrast, the
mean relative errors reach a stable level relatively quickly before experiencing a slow
decline. This behavior is consistent with what we will observe in the subsequent
tests. We believe that this phenomenon is linked to the di�usive nature of the LLF
method, which may lead to the observed error patterns.

In Fig. 6.8a, we observe the most negligible errors for NN-1, with the relative mean
error being approximately 0.2% for the height discretization. Moving to the limited
version MCL-NN-1, the performance is slightly worse, but the mean error remains
below 1%, as depicted in Fig. 6.8b. This outcome is expected since the MCL strategy
limits the subgrid �ux, reducing its antidi�usive nature and increasing the error.

However, in Fig. 6.8c, we see a signi�cant increase in errors for MCL-NN-2. The
mean error of the height discretization exceeds 2%, and the maximum error is below
5%. These results are consistent with our observations from the previous section,
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(a) NN-1, rel. h-error (b) MCL-NN-1, rel. h-error (c) MCL-NN-2, rel. h-error

(d) NN-1, rel. q-error (e) MCL-NN-1, rel. q-error (f) MCL-NN-2, rel. q-error

Figure 6.8: Time evolution of the mean (represented by the thick blue line) and
maximum relative height and discharge L2-errors among 20 reduced model's dis-
cretizations and the corresponding averaged methods they aim to replicate. The
initial data used are of type (6.1), where all parameters are randomly generated
from the distributions speci�ed in (6.2). Reduced model discretizations were ob-
tained with Heun's method on periodic meshes consisting of 50 cells.
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indicating that the discretizations are not as accurate as those of NN-1 and MCL-
NN-1.

Test

After generating the reference time series of relative errors, our next step is to test
the reduced models beyond the training range. For this purpose, we create initial
conditions of type (6.1), where one parameter is not generated from the distributions
speci�ed in (6.2).

First, we select initial conditions with lower and higher average height parameters
than those encountered in the training set. Subsequently, we consider initial condi-
tions with larger height amplitudes than what was seen during training. Lastly, we
investigate scenarios where the wave number of the height component is increased
beyond the range covered in the training data.

Height average variation

We generate two sets of 20 initial conditions of type (6.1), where all parameters
except the height average H0 are randomly drawn from the distributions speci�ed
in (6.2). For the �rst set, we set the height average H0 to be 1.6; for the second set,
we use H0 = 2.4. Subsequently, we calculate the mean and maximum relative error
evolutions described earlier in this section.

Fig. 6.9 illustrates the mean and maximum relative error evolution of the height
discretizations up to T = 40. In the �rst row, we display the results as a reference,
which are identical to Fig. 6.8a, Fig. 6.8b, and Fig. 6.8c.

As the initial conditions lie outside the training set range, the relative errors are
expected to increase. Indeed, we observe more signi�cant relative errors for the
NN-1 and MCL-NN-1 methods when H0 = 1.6 compared to the reference results.
Speci�cally, for NN-1, the mean relative error in Fig. 6.9d is approximately twice
as signi�cant as the mean error in Fig. 6.9a, starting from T = 10 or even earlier.
Nevertheless, the mean errors, still below 0.5%, remain smaller than the mean rel-
ative errors of MCL-NN-1 and MCL-NN-2. Similarly, for MCL-NN-1, it appears
that the errors are roughly twice as large, although a direct comparison is di�cult
due to the di�erent scaling of the y-axis in Fig. 6.9e and Fig. 6.9b.

Furthermore, we notice an increased number of outliers up to T = 20 in Fig. 6.9d
and Fig. 6.9e, compared to the corresponding references. However, these outliers
quickly level o� and have no signi�cant impact on the mean errors.
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6 Numerical Examples

(a) NN-1, H0 = 2.0 (b) MCL-NN-1, H0 = 2.0 (c) MCL-NN-2, H0 = 2.0

(d) NN-1, H0 = 1.6 (e) MCL-NN-1, H0 = 1.6 (f) MCL-NN-2, H0 = 1.6

(g) NN-1, H0 = 2.4 (h) MCL-NN-1, H0 = 2.4 (i) MCL-NN-2, H0 = 2.4

Figure 6.9: Time evolution of the mean (represented by the thick blue line) and
maximum relative height L2-errors among 20 reduced model's discretizations and
the corresponding averaged methods they aim to replicate. The initial data used
are of type (6.1), where all parameters except the height average H0 are randomly
generated from the distributions speci�ed in (6.2). The parameter H0 is selected
as indicated in the headings. Reduced model discretizations were obtained with
Heun's method on periodic meshes consisting of 50 cells.
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6.4 Performance outside the training range

For MCL-NN-2, the situation is quite di�erent. It is challenging to determine
whether the error in Fig. 6.9f is larger or smaller than the reference in Fig. 6.9c.
Moreover, the maximum errors tend to be smaller overall.

For H0 = 2.4, the mean relative error evolution of NN-1 illustrated in Fig. 6.9g
is, as expected, more signi�cant than the reference. However, the maximum error
remains consistently low. Surprisingly, the errors of the limited versions in Fig. 6.9h
and Fig. 6.9i become even smaller compared to the reference results. In fact, the
mean errors of MCL-NN-1 are mostly minor than those of NN-1, but the same
cannot be said for the maximum errors.

These results indicate that the behavior of the reduced models concerning initial
conditions outside the training range can be nuanced. While NN-1 generally exhibits
more signi�cant errors as expected, the limited versions MCL-NN-1 and MCL-NN-
2 surprisingly show improvements in speci�c scenarios, especially considering the
mean errors. However, the discrepancy between mean and maximum errors suggests
that there might be outliers or speci�c cases where MCL-NN-1 and MCL-NN-2 do
not perform as well as NN-1.

Nevertheless, our models accurately reproduce their respective target schemes for
other height averages in the initial conditions, similar to those encountered during
training.

Height amplitude variation

Next, we generate three sets of 20 initial conditions of type (6.1), where all param-
eters except the height amplitude Ah are randomly drawn from the distributions
speci�ed in (6.2). For each set, we set the height amplitude Ah to di�erent values:
0.8 for the �rst set, 1.0 for the second set, and 1.5 for the last set. Subsequently, we
calculate the mean and maximum relative error evolutions described earlier in this
section.

Fig. 6.10 illustrates the mean and maximum relative error evolution of the height
discretizations up to T = 40 for the discretizations of the reduced models. Again, in
the �rst row, we display the results as a reference, which are identical to Fig. 6.8a,
Fig. 6.8b, and Fig. 6.8c. These reference plots serve as a basis for comparison with
the subsequent results obtained from the three sets of initial conditions with varying
height amplitudes.

In all cases, we observe that the relative errors are initially quite large but gradually
diminish over time, eventually approaching the errors observed in the reference

45



6 Numerical Examples

(a) NN-1, Ah ∈ [0.2, 0.6] (b) MCL-NN-1, Ah ∈ [0.2, 0.6] (c) MCL-NN-2, Ah ∈ [0.2, 0.6]

(d) NN-1, Ah = 0.8 (e) MCL-NN-1, Ah = 0.8 (f) MCL-NN-2, Ah = 0.8

(g) NN-1, Ah = 1.0 (h) MCL-NN-1, Ah = 1.0 (i) MCL-NN-2, Ah = 1.0

(j) NN-1, Ah = 1.5 (k) MCL-NN-1, Ah = 1.5 (l) MCL-NN-2, Ah = 1.5

Figure 6.10: Time evolution of the mean (represented by the thick blue line)
and maximum relative height L2-errors among 20 reduced model's discretizations
and the corresponding averaged methods they aim to replicate. The initial data
used are of type (6.1), where all parameters except the height amplitude Ah are
randomly generated from the distributions speci�ed in (6.2). The parameter Ah is
selected as indicated in the headings. Reduced model discretizations were obtained
with Heun's method on periodic meshes consisting of 50 cells.
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6.5 Relaxation of the CFL condition

plots. As expected, the errors become more signi�cant as we increase the value of
Ah. However, with time, these errors tend to diminish.

As mentioned earlier, this phenomenon may be linked to the di�usive nature of the
LLF method. The added di�usion in the discretizations causes the height amplitude
to decrease over time as the network encounters modes it is already familiar with.
This leads to a gradual reduction in errors as the model gains better knowledge of
the problem dynamics.

Furthermore, we �nd that MCL-NN-2 exhibits a less distinct increase in errors
compared to NN-1 or MCL-NN-1 compared to the reference. This suggests that
MCL-NN-2 demonstrates improved error behavior in this context.

Overall, our models demonstrate a relatively accurate reproduction of their target
schemes for advanced times and various height amplitudes in the initial conditions,
similar to those encountered during training.

Height wave number variation

Finally, we create two sets of 20 initial conditions of type (6.1), where all parameters
except the wave number kh are randomly generated from the distributions (6.2).
For the �rst set, we set the height wave number kh to be 10; for the second set,
we use kh = 15. Subsequently, we calculate the mean and maximum relative error
evolutions described earlier in this section.

Fig. 6.11 illustrates the mean and maximum relative error evolution of the height
discretizations up to T = 40 for the discretizations of the reduced models. Again, in
the �rst row, we display the results as a reference, which are identical to Fig. 6.8a,
Fig. 6.8b, and Fig. 6.8c.

Once again, we observe a similar pattern where the relative errors become very
large initially and then diminish as time progresses. This behavior may be linked
to the di�usive nature of the LLF method. As time elapses, the added di�usion in
the discretizations causes the errors to reduce, leading to more accurate predictions
over time.

6.5 Relaxation of the CFL condition

Until now, we have employed small CFL parameters for our reduced models to
obtain time steps that closely match those of the process they aim to reproduce. As
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6 Numerical Examples

(a) NN-1, kh = 1, . . . , 6 (b) MCL-NN-1, kh = 1, . . . , 6 (c) MCL-NN-2, kh = 1, . . . , 6

(d) NN-1, kh = 10 (e) MCL-NN-1, kh = 10 (f) MCL-NN-2, kh = 10

(g) NN-1, kh = 15 (h) MCL-NN-1, kh = 15 (i) MCL-NN-2, kh = 15

Figure 6.11: Time evolution of the mean (represented by the thick blue line)
and maximum relative height L2-errors among 20 reduced model's discretizations
and the corresponding averaged methods they aim to replicate. The initial data
used are of type (6.1), where all parameters except the height wave number kh
are randomly generated from the distributions speci�ed in (6.2). The parameter
kh is selected as indicated in the headings. Reduced model discretizations were
obtained with Heun's method on periodic meshes consisting of 50 cells.
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6.5 Relaxation of the CFL condition

a reminder, for NN-1 and MCL-NN-1, we have been using ν = 0.0125, and for MCL-
NN-2, we have been using ν = 0.0025. This approach has resulted in an increased
number of time steps proportionate to reducing the number of degrees of freedom.
Consequently, the current procedures are not more e�cient than the original ones.
To improve e�ciency, an increase in the time step is desirable. Therefore, we test
more extensive CFL parameters in this Section to aim for a more e�cient model.

To test di�erent CFL parameters, we proceed as in the section before. We create
two sets of 20 initial conditions of type (6.1), where all parameters are randomly
generated from the distributions (6.2). Subsequently, we calculate the mean and
maximum relative error evolutions described earlier in the previous section. For the
�rst set of initial conditions, we use a CFL parameter of ν = 0.05, while for the
second set, we use a CFL parameter of ν = 0.1. By varying the CFL parameters
in this way, we aim to observe how the choice of time step size in�uences the
accuracy of the reduced models. This analysis will help us determine the optimal
CFL parameter.

Fig. 6.12 illustrates the mean and maximum relative error evolution of the height
discretizations up to T = 40 for the discretizations of the reduced models. In the
�rst row, we display the results as a reference, which are identical to Fig. 6.8a,
Fig. 6.8b, and Fig. 6.8c.

We observe that when using ν = 0.05 as the CFL parameter, the relative error
evolution of all reduced methods di�ers very little from the reference results. This
indicates that the reduced models can maintain a high level of accuracy with a
relatively larger time step compared to the original LLF methods.

However, when we increase the CFL parameter to ν = 0.1, the errors in the reduced
discretizations start to increase. These relative errors are still relatively small, but
it becomes apparent that more accurate results can be obtained if we do not use
the same CFL parameter as the LLF methods.

In summary, while the reduced models can maintain accuracy with a more signi�cant
time step of ν = 0.05, a larger CFL parameter of ν = 0.1 may lead to slightly higher
errors.
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6 Numerical Examples

(a) NN-1, ν = 0.0125 (b) MCL-NN-1, ν = 0.0025 (c) MCL-NN-2, ν = 0.0025

(d) NN-1, ν = 0.05 (e) MCL-NN-1, ν = 0.05 (f) MCL-NN-2, ν = 0.05

(g) NN-1, ν = 0.1 (h) MCL-NN-1, ν = 0.1 (i) MCL-NN-2, ν = 0.1

Figure 6.12: Time evolution of the mean (represented by the thick blue line) and
maximum relative height L2-errors among 20 reduced model's discretizations and
the corresponding averaged methods they aim to replicate. The initial data used
are of type (6.1), where all parameters except the are randomly generated from
the distributions speci�ed in (6.2). Discretizations obtained with Heun's method
on periodic meshes consisting of 50 cells, where the CFL parameter ν is selected
as indicated in the headings.
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7 Conclusions

In this thesis, we developed a reduced model using the LLF method for SWE by
approximating subgrid �uxes with feedforward neural networks. We trained two
networks to ensure the reduced model could accurately reproduce LLF methods on
meshes eight or 40 times �ner than the available mesh for speci�c problems.

However, we observed that the �rst reduced model resolves the target LLF scheme
more accurately than the second reduced model. This outcome is not surpris-
ing, given that the task of the second model is more challenging. The second
reduced model encounters di�culties capturing the underlying dynamics, particu-
larly around local extrema or points with steep gradients. This discrepancy may
be attributed to the scarcity of associated events in the training data, as the data
only provides the time evolution of discretizations from one speci�c point. We even
encountered instances of initial conditions with high oscillations within the training
range of the second network, resulting in instabilities.

To address this issue, we implemented the monolithic convex limiting strategy pro-
posed by Kuzmin [Kuz20], which successfully resolved the di�culty. This �nding
underscores the importance of developing procedures to ensure a data-driven model's
speci�c numerical and physical properties. Instabilities can manifest without a com-
plete understanding of their underlying reasons.

We proceeded by investigating the �rst reduced model and the limited versions
of the �rst and second reduced models. Our �ndings revealed that our models
can be applied to initial data that falls outside the training range of the networks.
Although the models perform less accurately than for problems within their familiar
domain, they perform reasonably well. Interestingly, the limited second reduced
model appears less susceptible to issues with unfamiliar data. In speci�c scenarios,
we even found instances where the limited versions of the reduced models showed
surprising improvements.

We also explored the impact of relaxing the CFL parameters to create more e�cient
models. By increasing the CFL parameter to 0.05 for all models of interest, we
found that we could maintain accuracy without sacri�cing performance, resulting
in a signi�cant speed-up of the procedure. However, it remains to be seen how the
method behaves outside the training range when using a larger CFL parameter.
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7 Conclusions

Further investigation is needed to determine if the model's performance remains
consistent under these conditions.

Furthermore, our current �ndings raise several questions that require further investi-
gation. One key aspect is exploring the possibility of obtaining other physical prop-
erties, such as entropy inequalities, through our approach. Moreover, our method
suits conservation laws, so we can consider parametrizing other conservation laws,
like the Euler equation, using the same approach. Extending this approach to solve
SWE with additional complexities, including bathymetry, friction, Coriolis forces,
and accommodating wetting and drying states is conceivable. Additionally, it would
be valuable to explore the applicability of our method in two dimensions, as it could
provide insights and enable performance evaluation in more intricate scenarios.
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