Suppose \(z_0\in \mathbb{R}\), \(f(z)\) is holomorphic on \(D(z_0,5)\), \(I\subseteq \mathbb{R}\) is an interval with length 1, \(z_0\in I\) and \(S\subseteq I\) is a measurable subset with nonzero measure. If \(\lvert f(z_0)\rvert\ge 1\) and \(M=\max_{|z-z_0|\le 4} |f(z)|\), then
\begin{equation*} \sup_{x\in I} \lvert f(x)\rvert \le \biggl(\frac{12}{\lvert S\rvert}\biggr)^{2 \frac{\log M}{\log 2}} \sup_{x\in S} \lvert f(x)\rvert. \end{equation*}
Proof
See also Link to heading
References Link to heading
- O. Kovrijkine,
Some estimates of Fourier transforms,
Ph.D. thesis, United States -- California: California Institute of Technology, 2000. - O. Kovrijkine,
Some results related to the Logvinenko-Sereda theorem,
Proceedings of the American Mathematical Society, vol. 129, no. 10, pp. 3037–3047, 2001. doi:10.1090/S0002-9939-01-05926-3 - M. Egidi and I. Veselić,
Scale-free Unique Continuation Estimates and Logvinenko–Sereda Theorems on the Torus,
Annales Henri Poincaré, vol. 21, no. 12, pp. 3757–3790, 2020. doi:10.1007/s00023-020-00957-7