Let \(F\colon M\to N\) be a smooth map between two manifolds and \(\gamma\colon I\to M\) a curve on \(M\). Then the velocity of the composite curve \(F\circ \gamma\colon I\to N\) at \(t_0\in I\) is given by
\begin{equation*} (F\circ \gamma)'(t_0)=dF(\gamma'(t_0)). \end{equation*}
\[
\newcommand{\d}{\mathrm{d}}
\newcommand{\e}{\mathrm{e}}
\newcommand{\i}{\mathrm{i}}
\]