\[ \newcommand{\d}{\mathrm{d}} \newcommand{\e}{\mathrm{e}} \newcommand{\i}{\mathrm{i}} \]

Let \((x^i)\) be a set of coordinate maps corresponding to a local chart \((\Omega, \varphi)\). Then \(\omega\in T^*_pM\) can be written as

\begin{equation*} \omega=\omega_idx^i|_p, \end{equation*}

where \(dx^i\) denotes the differential of the coordinate map and

\begin{equation*} \omega_i=\omega(\frac{\partial }{\partial x^i}|_p). \end{equation*}

See also Link to heading