\[ \newcommand{\d}{\mathrm{d}} \newcommand{\e}{\mathrm{e}} \newcommand{\i}{\mathrm{i}} \]

Let \(\hat{g}\) be the tangent-cotangent isomorphism . Then due to the local coordinate representation of \(g\) we may write

\begin{equation*} \hat{g}(X)(Y)=g_{ij}X^iY^j. \end{equation*}

Therefore the representation of \(\hat{g}(X)\) in local coordinates is given by

\begin{equation*} \hat{g}(X)=g_{ij}X^idx^j. \end{equation*}

It is customary to denote the components of \(\hat{g}(X)\) by

\begin{equation*} \hat{g}(X)=X_jdx^j, \end{equation*}

where \(X_j=g_{ij}X^i\). This procedure is called lowering an index.

See also Link to heading