\[ \newcommand{\d}{\mathrm{d}} \newcommand{\e}{\mathrm{e}} \newcommand{\i}{\mathrm{i}} \]

Let \(V\) be a \(n\)-dimensional vector space. If \((\varepsilon^i)\) is any dual basis , the for each positive integer \(k\le n\), the collection of \(k\)-covectors

\begin{equation*} \mathcal{E} = \{\varepsilon^I: I \text{ is an increasing multi-index} \} \end{equation*}

is a basis of alternating \(k\)-tensors \(\Lambda^k(V^*)\).

Remarks
  • \(\dim \Lambda^k(V^*) = \binom{n}{k}\).
  • We abbreviate the summation over all increasing multi-indices by the primed sum sign, i.e. \begin{equation*} \sum_{I}' \alpha_I\varepsilon^I := \sum_{1\le i_1<\ldots

See also Link to heading