\[ \newcommand{\d}{\mathrm{d}} \newcommand{\e}{\mathrm{e}} \newcommand{\i}{\mathrm{i}} \]

Let \(F\colon M\to N\) be smooth. Since a differential form \(\omega\) is a tensor field , the pullback \(F^*\omega\) is defined by

\begin{equation*} (F^*\omega)_p(v_1, \ldots, v_k)=\omega_{F(p)}(dF_p(v_1),\ldots,dF_p(v_k)). \end{equation*}

This is again a differential form.

Remarks
  • \(F^*\colon \Omega^k(N)\to \Omega^k(M)\) is linear
  • the pullback respects the wedge product , to be more precise, we have \begin{equation*} F^*(\omega\wedge \eta)=F^*(\omega)\wedge F^*(\eta). \end{equation*}

See also Link to heading