The tensor space \(T^{(k,l)}(V)\) of some finite dimensional vector space is isomorph to the space of multilinear maps
\begin{equation*} \underbrace{V^*\times \cdots \times V^*}_\text{\(k\)-times} \times \underbrace{V\times \cdots \times V}_\text{\(l\)-times} \to \mathbb{R} . \end{equation*}
Remark
- We have also such an isomorphism with \(V\) as the codomain. The tensor space \(T^{(k+1,l)}(V)\) is isomorph to the space of multilinear maps \begin{equation*} \underbrace{V^*\times \cdots \times V^*}_\text{\(k\)-times} \times \underbrace{V\times \cdots \times V}_\text{\(l\)-times} \to V . \end{equation*} [@lee2018riemannian_manifolds, Proposition B.1]
Links Link to heading
Questions Link to heading
- Are other codomains possible?