\[ \newcommand{\e}{\mathrm{e}} \newcommand{\i}{\mathrm{i}} \DeclareMathOperator{\tr}{tr} \]

The Levi-Civita connection commutes with musical isomorphisms , i.e. for some smooth tensor field \(F\) with a contravariant \(i\)-th index the lowering of the \(i\)-th index satisfy

\begin{equation*} \nabla(F^\flat)=(\nabla F)^\flat. \end{equation*}

Similarly, if \(G\) has a covariant \(i\)-th index the raising of the \(i\)-th index satisfy

\begin{equation*} \nabla(G^\sharp)=(\nabla G)^{\sharp}. \end{equation*}
Remark