\[ \DeclareMathOperator{\Vol}{Vol} \]
Warning

Let \((M,g)\) be a compact analytic Riemannian manifold and \(\nabla\) the corresponding Levi-Civita connection . Furthermore, let \(u_1,\ldots ,u_n\in C^\infty(M)\) be eigenfunctions of the Laplacian with the respective eigenvalues \(\lambda_1,\ldots ,\lambda_n\). We denote the maximal eigenvalue with \(E\).

On every good geodesic ball \(B\) there is a point \(x\in B\) such that for every \(y\in B_R(x)\) with \(R>0\) the following inequality holds

\[ \lvert u(y)\rvert\le \biggl(\frac{2}{\Vol(B)}\biggr)^{1/2} \exp(CR\sqrt{E}) \lVert u\rVert_{L^2(B)}, \]

where \(C>0\) is a universal constant depending on \(d\)(?).

Proof

Let \(B\) be a good ball. Then there is a good point \(p\in B\) such that

\[\langle \nabla^ku , \nabla^ku\rangle_{g_p} \le \frac{2}{\Vol(B)} (CE)^k \lVert u\rVert_{L^2(B)}^2 \]

{#eq:eq1} for every geodesic \(\gamma\) starting in \(p\).

Using (0x66e293b5) and (0x6731eeba) we obtain

\[ \lvert (u\circ \gamma)^{(k)}(0)\rvert^2 = |\nabla^n_{\gamma'(0)} u|^2 \le \langle \nabla^k u, \nabla^k u\rangle_{g_{\gamma(0)}}. \]

{#eq:eq2}

Let \(t \begin{align*} |(u\circ \gamma)(t)| &\le \sum_{k=0}^{\infty} \frac{\lvert (f\circ \gamma)^{(k)}(0)\rvert}{k!}t^k \\ &\le \sum_{k=0}^{\infty} \frac{(\sqrt{CE}R)^k}{k!} \biggl(\frac{2}{\Vol(B)}\biggr)^{1/2} \lVert u\rVert_{L^2(B)}\\ &=\biggl(\frac{2}{\Vol(B)}\biggr)^{1/2} \exp(C' R\sqrt{E}) \lVert u\rVert_{L^2(B)} \end{align*}

where we used [@eq:eq2] and [@eq:eq1].

Remarks

See also Link to heading