Let \(P(z)=\sum_{n=0}^{\infty} a_n(z-z_0)^n\) be a convergent power series , i.e. with positive radius of convergence. Due to the differentiability of the power series we obtain
\begin{equation*} P^{(k)}(z)=\sum_{n=k}^{\infty} n(n-1)\cdots (n-k+1)a_n(z-z_0)^{n-k}. \end{equation*}Thus, the coefficients are given by
\begin{equation*} a_n=\frac{P^{(n)}(z_0)}{n!}. \end{equation*}For the multidimensional case we have
\begin{equation*} a_\mu = \frac{\partial^\mu f(z_0)}{\mu!}. \end{equation*}[1, Proposition 2.2.3]
Remarks
- The coefficients coincide with Taylors formula .
References Link to heading
- S. Krantz and H. Parks, A Primer of Real Analytic Functions. Boston, MA: Birkhäuser Boston, 2002. doi:10.1007/978-0-8176-8134-0