The Fourier transform may be interpreted as an operator on \(L^2(\mathbb{R}^n)\). However, not every \(L^2\) function is integrable and cannot therefore be defined as here . Since the Schwartz functions are dense in \(L^2(\mathbb{R}^n)\) the operator \(\mathcal{F}\colon L^2(\mathbb{R}^n)\to L^2(\mathbb{R}^n)\) can be defined as the continuation of the one defined on Schwartz-spaces [1, Satz V.2.9].

Remark

See also Link to heading

References Link to heading

  1. D. Werner, Funktionalanalysis. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. doi:10.1007/978-3-662-55407-4