The power series
\begin{equation*} \sum_{n=0}^{\infty} a_n(z-z_0)^n \end{equation*}
has the radius of convergence
\(r>0\) if and only if for every \(0
[1, Corollary 1.10]
For multidimensional power series there is a similar result. Let \(\sum_{\mu} a_\mu (x-x_0)^\mu\) be a multidimensional power series and \(\mathcal{C}\) its domain of convergence . For every \(y\in \mathcal{C}\) there are constants \(C>0\) and \(\varepsilon>0\) such that
\begin{equation*} \lvert a_\mu\rvert \le \frac{C}{\prod_{j=1}^{n} \lvert y_j-(x_0)_j\rvert^{\mu_j}}. \end{equation*}[1, Lemma 2.1.10]
Proof
This is a consequence of the Cauchy-Hadamard theorem
References Link to heading
- S. Krantz and H. Parks, A Primer of Real Analytic Functions. Boston, MA: Birkhäuser Boston, 2002. doi:10.1007/978-0-8176-8134-0