Let \(f\colon U\subset \mathbb{R}\to \mathbb{R}\) be smooth. The function \(f\) is real analytic function if and only if for every \(x_0\in U\) there is a subset \(V\subset U\) with \(x_0\in V\), and constants \(C>0\) and \(R>0\) such that for all \(x\in V\) and \(k\in \mathbb{N}\)
\begin{equation*} \lvert f^{(k)}(x)\rvert\le C \frac{k!}{R^k}. \end{equation*}[1, Proposition 1.2.12]
Proof
The first implication is a consequence of (0x6759a3f7) (or more precisely [1, Proposition 1.2.3]) and (0x675bfefc) .
The reverse direction is an application of Taylor’s formula .
Remarks
- Not every smooth function is analytic.
- The same is true for the multidimensional case [1, Proposition 2.2.10].
References Link to heading
- S. Krantz and H. Parks, A Primer of Real Analytic Functions. Boston, MA: Birkhäuser Boston, 2002. doi:10.1007/978-0-8176-8134-0