\[ \DeclareMathOperator{\Ran}{Ran} \]

Suppose \(B>0\) and \(S\subseteq \mathbb{R}^2\) is \((\gamma,a)\)-thick and \(H_B\) the corresponding Landau operator . Then, there are numerical constants \(C_1,C_2,C_3,C_4>0\) such that for every \(E>0\) and every \(f\in \Ran 𝟙_{(-\infty,E]}(H_B)\) we have

\[ \lVert f\rVert^2_{L^2(\mathbb{R}^2)}\le \biggl(\frac{C_1}{\gamma}\biggr)^{C_2+C_3\lvert a\rvert_1+C_4(\lvert a\rvert^2B)}\lVert f\rVert^2_{L^2(S)}.\]

[1, Theorem 3]

Proof
The proof is a reformulation of the one of Kovrijkine . A main difference is the used Bernstein inequality . A delicate step is the Taylor expansion estimate. For details see section 4.3 in [1].
Remarks

References Link to heading

  1. P. Pfeiffer and M. Täufer, Magnetic Bernstein inequalities and spectral inequality on thick sets for the Landau operator, 2023. doi:10.48550/arXiv.2309.14902