\[ \DeclareMathOperator{\Rc}{Rc} \]

Suppose \(\mathbb{S}^d_R\) is the \(d\)-sphere with radius \(R>0\) endowed with the round metric \(g\).

The Ricci curvature of \(\mathbb{S}^d_R\) is given by

\[ \Rc = \frac{d-1}{R^2}. \]

In terms of any basis it is

\[ R_{ij}=\frac{d-1}{R^2}g_{ij}. \]

[1, Proposition 8.36]

References Link to heading

  1. J. Lee, Introduction to Riemannian Manifolds. Cham: Springer International Publishing, 2018. doi:10.1007/978-3-319-91755-9