\[ \DeclareMathOperator{\supp}{supp} \]

Suppose \(\mathbb{K}\) is either \(\mathbb{R}\) or \(\mathbb{C}\). The \(l^p\)-norm of a vector \(x\in \mathbb{K}^d\) is given by

\[ \lVert x\rVert_p=\Bigl(\sum_{i=1}^{d}\lvert x_i\rvert^p\Bigr)^{1/p} \]

if \(p\in (0,\infty )\) and for \(p=\infty\) we set

\[ \lVert x\rVert_\infty = \sup_{i\in \{1,\ldots ,d\}}\lvert x_i\rvert. \]

For \(p=0\) we define

\[ \lVert x\rVert_{0}=\lvert \supp x\rvert, \]

where \(\supp\) is the support of \(x\) and \(\lvert x\rvert\) is vector with absolute values of \(x\).

Remarks

Norm Property Link to heading

Not all maps are real norms.

  • The maps \(\lVert \cdot\rVert_p\) are norms for \(p\in [1,\infty ]\).
  • The maps \(\lVert \cdot\rVert_p\) are not norms for \(p\in [0,1)\).

Relations between Different \(l^p\)-Norms Link to heading

See also Link to heading