Suppose \(\mathbb{K}\) is either \(\mathbb{C}\) or \(\mathbb{R}\), \(x\in \mathbb{K}^N\), \(s\le N\) and \(0
s-term approximation error by
\[ \sigma_s(x)_q\le \frac{\lVert x\rVert_p}{s^{1/p-1/q}}. \][1, Satz 1.6]
Additionally, there is another estimate in terms of the weak \(l^p\)-norm , i.e.
\[ \sigma_s(x)_q \le \biggl(\frac{p}{q-p}\biggr)^{1/q} \frac{\lVert x\rVert_{p,\infty }}{s^{1/p-1/q}}. \][1, Satz 1.13]
Remarks
- There are sharper estimates by adding some multiplicative constant in the front of the right hand side.
References Link to heading
- I. Veselic. Class Lecture, Topic:
Compressive Sensing.
Technische Universität Dortmund, 2017.