Let \(k\in \mathbb{N}\). The Sobolev space \(H^k(\mathbb{Z}^d)\) is defined by

\[ H^k(\mathbb{Z}^d)=\{f\in \ell^2(\mathbb{Z}^d)\mid \partial^\alpha f\in \ell^2(\mathbb{Z}^d), \lvert \alpha\rvert\le k\}. \]

The map

\begin{equation*} \lVert f\rVert_{H^k(\mathbb{Z}^d)}^2=\sum_{\lvert \alpha\rvert\le k} \lVert \partial^\alpha f\rVert_{\ell^2(\mathbb{Z}^d)}^2, \end{equation*}

is a norm on \(H^k(\mathbb{Z}^d)\).

See also Link to heading