Let \(\Omega\subseteq R^d\) be a bounded domain. Suppose \(A\in C^{0,1} (\Omega)\) with

\begin{align*} \lambda |\xi|^2 \leq A\xi\cdot \xi \leq \lambda^{-1} |\xi|^2, \qquad \forall x\in \Omega, \forall \xi\in \mathbb{R}^d, \end{align*}

\[ \lVert A \rVert_{C^{0,1}(\Omega)}\le M, \]

and \( u \in H^1(\Omega) \) is a weak solution of

\[ \operatorname{div}(A \nabla u) = 0. \]

Let \( h \in (0, r/2), \, D \subset U \) connected, open with \( B_{r/2}(x_0) \subset D \), and \( \operatorname{dist}(D, \partial \Omega) \geq h \). Then

\[ \| u \|_{L^\infty(D)} \leq C \, \| u \|_{L^2(B_r(x_0))}^{\delta} \, \| u \|_{L^2(\Omega)}^{1-\delta}, \]

where

\[ C = C_1 \left( \frac{|\Omega|}{h^d} \right)^{1/2}, \quad \delta \geq \tau^{\frac{C_2 |\Omega|}{h^d}}, \]

with \( C_1, C_2 > 0, \, \tau \in (0,1) \) depending on \( \lambda, M \) [1, Theorem 5.1]

Questions
  • What if \( \operatorname{dist}(x_0, D) = r/2 + \varepsilon \) and \( h = \varepsilon'\) with \( \varepsilon, \varepsilon' < r/2 \). Then \( B_r(x_0) \nsubseteq U \).
  • What weak solution means in this context?

Links Link to heading

References Link to heading

  1. G. Alessandrini, L. Rondi, E. Rosset, and S. Vessella, The stability for the Cauchy problem for elliptic equations, Inverse Problems, vol. 25, no. 12, p. 123004, 2009. doi:10.1088/0266-5611/25/12/123004