A norm \(\lVert \cdot\rVert\) induces an inner product via the polarization identity if and only if it satisfies the parallelogram law .
Proof
- \( \Rightarrow \): Clear.
- \( \Leftarrow \): Define \( \langle \cdot, \cdot \rangle \) via the polarization identity and prove the properties of an inner product [1].
References Link to heading
- D. Werner, Funktionalanalysis. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. doi:10.1007/978-3-662-55407-4