Let \( \Omega \) be bounded with \( C^{1} \)-boundary. By Morrey’s inequality ,
\[ W^{1,\infty}(\Omega) \hookrightarrow C^{0,1}(\overline{\Omega}). \]In particular, \( u \in W^{1,\infty}(\Omega) \) has a classical trace
\[ u|_{\partial \Omega} \in C(\partial \Omega), \]and there holds
\[ \|u|_{\partial \Omega}\|_{C(\partial \Omega)} \le \|u\|_{C^{0,1}(\overline{\Omega})} \le C \|u\|_{W^{1,\infty}(\Omega)}, \]for some constant \( C > 0 \) not depending on \( u \). Thus,
\[ W^{1,\infty}(\Omega) \hookrightarrow C(\partial \Omega). \]