Let \(\vartheta\) be as defined in the proof of (0x68c9184d) . There exists a numerical constant \(C\) such that

\[ \lvert \nabla \vartheta\rvert^2 \le C\biggl( \frac{1+\alpha_-^2}{\delta^2 R_2^2}\, ๐Ÿ™_{\Bigl\{ - 3R_2 \le z \leq -2R_1,\, y < \tfrac{R_1}{2a}\Bigr\}} + \frac{1+\alpha_+^2}{\delta^2 R_1^2}\, ๐Ÿ™_{\Bigl\{z \geq -3R_2,\, \tfrac{R_1}{4a} < y < \tfrac{R_1}{2a}\Bigr\}} \biggr). \]
Proof

We write \(\lesssim\) if \(\le\) holds up to a positive numerical constant.

Using the estimates given in (0x68ed5419) , and \(R_1< R_2< 1\), we obtain

\begin{align*} |\nabla \vartheta|^2 &\leq (|\nabla \vartheta_1|^2 \vartheta_2^2 + \vartheta_1^2 |\vartheta'_2|^2) \\ &\lesssim \frac{1+\alpha_-^2}{\delta^2 R_2^2} \, ๐Ÿ™_{\operatorname{supp} \nabla \vartheta_1 \cap \operatorname{supp} \vartheta_2} + \frac{\alpha_+^2}{\delta^2 R_1^2}\, ๐Ÿ™_{\operatorname{supp} \vartheta_1 \cap \operatorname{supp} \vartheta_2'}\\ &\le \frac{1+\alpha_-^2}{\delta^2 R_2^2} \, ๐Ÿ™_{\Bigl\{ - 3R_2 \le z \leq -2R_1,\, y < \tfrac{R_1}{2a}\Bigr\}} + \frac{1+\alpha_+^2}{\delta^2 R_1^2}\, ๐Ÿ™_{\Bigl\{z \geq -3R_2,\, \tfrac{R_1}{4a} < y < \tfrac{R_1}{2a}\Bigr\}}. \end{align*}

See also Link to heading