The set
\[ \mathbb{H}^n = \{ (q_1, \ldots, q_n) \mid q_i \in \mathbb{H} \} \]is a right vector space over the quaternions . That is, the scalar product from the right is defined by
\[ (q_1, \ldots, q_n) q := (q_1 q, \ldots, q_n q). \]
Remark
-
A map \( \varphi : \mathbb{H}^n \to \mathbb{H}^m \) is linear if and only if
\[ \varphi(v + w) = \varphi(v) + \varphi(w), \quad \text{and} \quad \varphi(v q) = \varphi(v) q. \] -
A linear map \( \varphi : \mathbb{H}^n \to \mathbb{H}^m \) is given by a matrix
\[ A \in M^{n \times m}(\mathbb{H}), \]which is multiplied from the right.