Let \(M\) be a smooth manifold. We define the bundle of covariant \(k\)-tensors on M by

\begin{equation*} T^kT^*M=\coprod_{p\in M} T^k(T^*_pM), \end{equation*}

the bundle of contravariant \(k\)-tensors on \(M\) by

\begin{equation*} T^kTM=\coprod_{p\in M} T^k(T_pM) \end{equation*}

and the bundle of mixed tensors of type \((k,l)\) on \(M\) by

\begin{equation*} T^{(k,l)}TM=\coprod{p\in M} T^{(k,l)}(T_pM). \end{equation*}
Remarks
  • \(T^{(0,1)}TM=T^*M\)
  • \(T^{(1,0)}TM=TM\)
  • \(T^{(0,k)}TM=T^kT^*M\)
  • \(T^{(k,0)}TM=T^kTM\)

Links Link to heading

Objects on Tensor Fields Link to heading

Other bundles Link to heading