Every homogeneous polynomial \(p\) can be decomposed to
\[ p=\lvert x\rvert^2 p_1 + \cdots + \lvert x\rvert^{2k} p_k \]where \(k\) is a suitable integer, and \(p_1,\ldots ,p_k\) are solid harmonics [1, Corollary 17.15].
Link Link to heading
- solid harmonic
- proof
- every polynomial has a harmonic restriction on a sphere
- spherical harmonics \(\iff \) solid harmonics
References Link to heading
- B. Hall, Quantum Theory for Mathematicians. New York, NY: Springer New York, 2013. doi:10.1007/978-1-4614-7116-5