Let \(H_1\) and \(H_2\) be Hilbert spaces and let \(T\colon H_1\to H_2\) denote a bounded operator . The adjoint of T is the continuous operator \(T^*\colon H_2\to H_1\) satisfying
\[ \langle Tx, y\rangle_{H_2} = \langle x, T^*y\rangle_{H_1} \]for all \(x\in H_1\) and \(y\in H_2\).
Remarks
-
For every \(y\in H_2\), the map
\[ x \mapsto \langle Tx, y\rangle_{H_2} \]is bounded and linear. By the Riesz representation theorem , there exists a vector \(z\in H_1\) such that
\[ \langle Tx, y\rangle_{H_2} = \langle x, z\rangle_{H_1}. \]Then we set \(T^*y=z\). This construction is equivalent to the above definition.
-
Properties of Adjoint Operators. Let \(H_1\), \(H_2\), and \(H_3\) denote Hilbert spaces, \( S, T \in \mathcal{L}(H_1, H_2) \), \( R \in \mathcal{L}(H_2, H_3) \), and \( \lambda \in \mathbb{C} \).
- \((S + T)^* = S^* + T^*\)
- \((\lambda S)^* = \overline{\lambda}\, S^*\)
- \((RS)^* = S^* R^*\)
- \(S^{**} = S\)
- \(S^* \in \mathcal{L}(H_2, H_1)\) and \(\|S^*\| = \|S\|\)
- \(\|S^* S\| = \|S S^*\| = \|S\|^2\)
- \(\ker S = (\operatorname{ran} S^*)^{\perp}_{H_1}\) (\(Sx = 0 \;\; \Leftrightarrow \;\; S^* Sx = 0 \quad (1.5,\; \text{Satz 26})\))