Let \(d\ge 1\) and \(p \in [1,\infty]\). The Bernstein inequality
\begin{equation*} \lVert f^{(\alpha)}\rVert_{L^p(\mathbb{R}^d)} \le (Cb)^{\lvert \alpha\rvert} \lVert f\rVert_{L^p(\mathbb{R})} \end{equation*}holds for every multi-index \(\alpha\) and for every \(f\in L^p(\mathbb{R}^d)\) with \(\supp \hat{f} \subset [-b,b]^d\) for some \(b>0\), where \(C>0\) is a numerical constant [1, Theorem 11.3.3].
Links Link to heading
Related Results Link to heading
- Local Bernstein on the compact manifolds
- Bernstein inequalities on the sphere
- Magnetic Bernstein inequality
- Bernstein inequality \(\mathbb{Z}^d\)
Implications Link to heading
References Link to heading
- R. Boas, Entire functions. New York San Francisco London: Academic press, 1954.