Let \(M\) be a smooth manifold. A connection is a map

\begin{equation*} \nabla\colon \mathfrak{X}(M)\times \mathfrak{X}(M) \to \mathfrak{X}(M), \end{equation*}

written \(\nabla(X,Y)=\nabla_X Y\), satisfying

  1. \(C^\infty\) linearity in the firs argument: For \(f\in C^\infty(M)\), \begin{equation*} \nabla_{fX_1+X_2}Y=f\nabla_{X_1}Y+\nabla_{X_2}Y, \end{equation*}
  2. \(\mathbb{R}\) linearity in the second argument: For \(a\in \mathbb{R}\), \begin{equation*} \nabla_X (aY_1+Y_2)=a\nabla_XY_1+\nabla_X Y_2, \end{equation*}
  3. product rule: For \(f\in C^\infty(M)\), \begin{equation*} \nabla_X (fY)=f\nabla_XY+X(f)Y. \end{equation*}

Links Link to heading

Special Connections Link to heading

Examples Link to heading

Notes Link to heading

Questions Link to heading