Let \(\nabla\) be a connection in the tangent bundle. Then the connection coefficients corresponding to a local frame \((E_i)\) and \(\nabla\) are smooth functions defined by
\begin{equation*} \nabla_{E_i}E_j=\Gamma_{ij}^kE_k. \end{equation*}
Remarks
- Given a frame and \(n^3\) connection coffecients \(\Gamma_{ij}^k\) defines a connection in \(TM\) [@lee2018riemannian_manifolds, Lemma 4.10].