Consider two series \(\sum_{n=0}^{\infty} a_n\) and \(\sum_{n=0}^{\infty} b_n\). If \(\lvert a_n\rvert\le C\lvert b_n\rvert\) for a constant \(C>0\) and all sufficiently large \(n\in \mathbb{N}\) and \(\sum_{n=0}^{\infty} b_n\) is absolute convergent , then \(\sum_{n=0}^{\infty} a_n\) is also absolute convergent.