Let \(\sum_{\mu\in \mathbb{N}^n} a_\mu (x-x_0)^{\mu}\) be a multidimensional power series . Then

\begin{equation*} \mathcal{C}=\bigcup_{r>0} \{x\in \mathbb{R}^n\mid \sum_{\mu} \lvert a_\mu(y-x_0)^\mu\rvert< \infty, \quad \forall \lvert y-x\rvert< r\}. \end{equation*}

For every point \(x\in \mathbb{C}\) there is some \(r>0\) such that the power series converge in \(B_r(x)\).

Remarks