\[ \newcommand{\d}{\mathrm{d}} \newcommand{\e}{\mathrm{e}} \newcommand{\i}{\mathrm{i}} \]

The exterior derivative \(d\) is a map which maps smooth \(k\)-forms to smooth \(k+1\)-forms. It is convenient to define it in local coordinates. Let \(\omega\in \Omega^k(M)\) then

\begin{equation*} d\Bigl(\sum_{J}' \omega_Jdx^J\Bigr)=\sum_{J}' d\omega_J\wedge dx^J=\sum_{J}' \frac{\partial \omega_J}{\partial x^i}dx^i\wedge dx^{j_1}\wedge \cdots \wedge dx^{j_k}, \end{equation*}

where we are using the primed sum sign defined in (0x66d1b59f) .

Remarks

Properties Link to heading

  • \(d\) is linear
  • \(d\circ d=0\)
  • Product rule for wedge products : Let \(\omega\in \Omega^k(M)\) and \(\eta\in \Omega^l(M)\), then \begin{equation*} d(\omega\wedge \eta)=d\omega\wedge \eta + (-1)^k\omega\wedge d\eta. \end{equation*}
  • Commutes with pullbacks: Let \(F:M\to N\) smooth and \(\omega\) be a smooth \(k\)-form on \(N\). Then \begin{equation*} F^*(d\omega)=d(F^*\omega). \end{equation*}

See also Link to heading