Define for \(f\in L^1(\mathbb{R}^n)\) and \(\xi\in \mathbb{R}^n\) the Fourier transform of \(f\)

\begin{equation*} (\mathcal{F}f)(\xi)=\frac{1}{(\sqrt{2\pi})^{n}}\int_{\mathbb{R}^n} f(x)e^{-ix \xi}\;dx. \end{equation*}

Some authors denote the Fourier transform of \(f\) with \(\hat{f}\).

See also Link to heading