Let \(\Omega\subset \mathbb{R}^n\) be a domain . The Laplacian of a twice differentiable function \(f\colon \Omega\to \mathbb{R}\) is defined by
\begin{equation*} \Delta f := \div (\grad u) = \sum_{i=1}^{n} \frac{\partial^2 f}{\partial x_i^2}. \end{equation*}
\[
\DeclareMathOperator{\div}{div}
\DeclareMathOperator{\grad}{grad}
\]