Let \(p\in (0,\infty]\) and \((\Omega, \Sigma, \mu)\) a meausurable space . A function \(f\) is in \(L^p(\mu)\) if
\[ \lVert f\rVert_{L^p(\Omega,\mu)}=\Bigl(\int_{\Omega} \lvert f\rvert^p d\mu\Bigr)^{1/p}. \]is finite. For \(p=\infty\) we set
\[ \lVert f\rVert_{L^\infty (\Omega,\mu)}= \ess \sup \lvert f\rvert . \]