Let \(n \in \mathbb{N}\). An element \(\alpha\in \mathbb{N}^n\) is called multi-index. We write for \(\alpha\in \mathbb{N}^n\) and \(x\in \mathbb{C}^n\)
- \(|\alpha|=\sum_{i=1}^{n} \alpha\)
- \(\alpha! = \prod_{i=1}^{n} \alpha_i!\)
- \(x^{\alpha}=\prod_{i=1}^{n} x_i^{\alpha_i}\)
See also Link to heading
- \(x^{\alpha}\)-estimate
- binary operations
- \(\partial^{\alpha}\)-derivative
- increasing multi-index