Suppose \(S\subseteq B\subseteq \mathbb{R}^d\) are bounded measurable sets with positive measure. For every point \(x\in B\) there is a line segment \(I\subset B\) starting in \(x\) with
\begin{equation*} \lvert S \rvert \le C (\diam B)^{d-1} \lvert S\cap I\rvert, \end{equation*}where \(C>0\) is a constant depending only on \(d\).
Proof
Using polar coordinates we may write
\begin{equation*} \lvert S\rvert = \int_{\mathbb{S}^{d-1}} \int_{0}^{\infty} 𝟙_{S}(x+r\xi)r^{d-1}\,dr\, d\xi. \end{equation*}There is a direction \(\eta\in \mathbb{S}^{d-1}\) such that
\begin{equation*} \lvert S\rvert \le \sigma_{d-1} \int_{0}^{\infty} 𝟙_{S}(x+r\eta)r^{d-1}\,dr, \end{equation*}where \(\sigma_{d-1}=\lvert \mathbb{S}^{d-1}\rvert\). Otherwise, one obtain a contradiction by integrating both sides over \(\mathbb{S}^{d-1}\). (Maxima cannot be smaller than the average.)
By estimating \(r\) on the right hand side with \(\diam B\) we obtain
\begin{equation*} \lvert S \rvert \le \sigma_{d-1} (\diam B)^{d-1} \lvert S\cap I\rvert. \end{equation*}See also Link to heading
References Link to heading
- O. Kovrijkine,
Some estimates of Fourier transforms,
Ph.D. thesis, United States -- California: California Institute of Technology, 2000. - F. Nazarov,
Local estimates for exponential polynomials and their applications to inequalities of the uncertainty principle type,
Rossiĭskaya Akademiya Nauk. Algebra i Analiz, vol. 5, no. 4, p. 3–66, 1993.