Let \(U\subset \mathbb{R}^n\) be an open set and bounded in at least one direction. Then for \(1\le p<\infty\) exists a constant \(C\) depending on \(U\) and \(p\), such that for every \(u\in W^{1,p}_0(U)\) the Poincaré inequality holds
\begin{equation*} \lVert u\rVert_{L^p(U)}\le C\lVert Du\rVert_{L^p(U)}. \end{equation*}Proof ideas Link to heading
Elementary proof Link to heading
Assume \(U\) is bounded in the \(e_n\) direction. Using the fundamental theorem estimate \((u(\widetilde{x}, x_n)\) with the derivative and then integrate over all variables. [1].
Using Sobolev embeddings where \(U\) is bounded Link to heading
Assume \(p
References Link to heading
- B. Schweizer, Partielle Differentialgleichungen: Eine anwendungsorientierte Einführung. Berlin, Heidelberg: Springer Berlin Heidelberg, 2023. doi:10.1007/978-3-662-67188-7