Let \(n\in \mathbb{N}\). A root of unity is a complex number \(z\), such that
\[ z^n=1. \]The roots are
\[ 1,\e^{2\pi i \frac{1}{n}}, \ldots , \e^{2\pi i \frac{n-1}{n}}. \]Let \(n\in \mathbb{N}\). A root of unity is a complex number \(z\), such that
\[ z^n=1. \]The roots are
\[ 1,\e^{2\pi i \frac{1}{n}}, \ldots , \e^{2\pi i \frac{n-1}{n}}. \]