\[ \DeclareMathOperator{\supp}{supp} \]

Let \(\mathbb{K}\in \{\mathbb{R}, \mathbb{C}\}\) and \(s\le N\). A vector \(x\in \mathbb{K}^N\) is \(s\)-sparse if

\[ \lvert \supp x\rvert \le s, \]

where \(\supp x\) denotes the support of \(x\) .

The subset of all \(s\)-sparse vectors is denoted by \(\mathbb{K}^N_s\).

Remarks
  • \(\mathbb{K}_s^N\) is not a subspace .

See also Link to heading