\[ \newcommand{\e}{\mathrm{e}} \DeclareMathOperator{\Re}{Re} \]

Suppose \(n\in \mathbb{N}\), \(\beta_1,\ldots ,\beta_n\in \mathbb{C}\) and \(\lambda_1,\ldots ,\lambda_n\in \mathbb{C}\). Let also \(p(t)=\sum_{k=1}^{n} \beta_k \e^{\lambda_k t}\) be an exponential polynomial, \(I\subseteq \mathbb{R}\) be a bounded interval and \(S\subseteq I\) a measurable subset with positive measure. Then there is a constant \(C>0\) such that

\[ \sup_{t\in I} \lvert p(t)\rvert \le \e^{\lvert I\rvert\max_{k=1,\ldots ,n} \lvert \Re \lambda_k\rvert}\biggl(\frac{C\lvert I\rvert}{\lvert S\rvert}\biggr)^{n-1}\sup_{t\in S} \lvert p(t)\rvert \]

[1, Theorem 1].

See also Link to heading

References Link to heading

  1. F. Nazarov, Local estimates for exponential polynomials and their applications to inequalities of the uncertainty principle type, Rossiĭskaya Akademiya Nauk. Algebra i Analiz, vol. 5, no. 4, p. 3–66, 1993.