Suppose \(\mathbb{K}\) is either \(\mathbb{R}\) or \(\mathbb{C}\) and \(p\in (0,\infty)\). The \(l^p\)-norm of a vector \(x\in \mathbb{K}^d\) is given by
\[ \lVert x\rVert_{p,\infty }=\sup_{t>0}\lvert \{j\in {1,\ldots ,d} \mid \lvert x_j\rvert\ge t\}\rvert^{1/p}\cdot t. \][1]
See also Link to heading
References Link to heading
- I. Veselic. Class Lecture, Topic:
Compressive Sensing.
Technische Universität Dortmund, 2017.